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Abstract 

This contribution reviews the effects of source heterogeneities, melt-rock reactions and 

intracrustal differentiation on magma chemistry across mid-ocean ridges, intraplate settings and 

subduction zones using experimental studies and natural data. We compare melting behaviors of 

pyroxenites and peridotites and their relative contributions to magmas as functions of 

composition, mantle potential temperatures and lithospheric thickness. We also discuss the fate 

of chemically distinct melts derived from heterogeneities as they travel through a peridotitic 

mantle. Using nearly 60,000 natural major element compositions of volcanic rocks, melt 

inclusions, and crystalline cumulates, we assess broad petrogenetic trends in as large of a global 

dataset as possible. Consistent with previous studies, major element chemistry of mid-ocean 

ridge basalts (MORBs) and their cumulates favor a first-order control of intracrustal crystal-

liquid segregation, while trace element studies emphasize the role of melt-rock reactions, 

highlighting the decoupling between the two. Ocean island basalts (OIB) show a larger 

compositional variability than MORB, partly attributed to large variations of pyroxenite 

proportions in the mantle source. However, the estimated proportions vary considerably with 

heterogeneity composition, melting model and thermal structure of the mantle. For arcs, we 

highlight current views on the role of the downgoing slab into the source of primary arc magmas, 

and the role of the overriding lithosphere as a magmatic chemical filter and as the repository of 

voluminous arc cumulates. Our approach of simultaneously looking at a large database of 

volcanic + deep crustal rocks across diverse tectonic settings underscores the challenge of 

deciphering the source signal versus intracrustal/lithospheric processes.  

 

Plain Language Summary 

Volcanic rocks on Earth share a common history – melting in the mantle tens to hundreds of 

kilometers deep, traveling through the mantle to the crust, and cooling and partial crystallizing in 

the crust, before finally reaching the surface – and yet, they show an incredible compositional 

variability. What creates such variability? In this chapter, we discuss the potential causes by 

looking at the role of the heterogeneities in the mantle and the fate of the magmas along their 

journey to the surface through the mantle and the crust. The discussion is based on experimental 

studies and natural compositions of about 60,000 volcanic rocks, melt inclusions (small pools of 

magma trapped inside the minerals) and cumulates (products of the crystallization of the 

magmas) from three main geological settings: divergent plate boundaries (mid-ocean ridges), 

intra tectonic plates (oceanic islands) and convergent plate boundaries (subduction zones).  
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1 Introduction 

Magmatism on Earth takes place at three main different tectonic settings: mid-ocean ridges, 

intraplate settings including ocean islands, and arc magmatism in subduction zones. The upper 

mantle, mostly composed of peridotites, is the main source of magma on Earth. However, 

geophysical, geochemical and field observations demonstrate that the mantle is heterogeneous. 

Many studies have proposed that crustal lithologies introduced in the Earth’s mantle by 

subduction, including sediments and oceanic crust contribute significantly as heterogeneities to 

the generation of mantle-derived magmas (e.g. Chase, 1981; Helffrich and Wood, 2001; 

Hirschmann and Stolper, 1996; Hofmann, 1997; Hofmann and White, 1982; Jackson et al., 2007; 

Lambart, 2017; Lambart et al., 2009, 2016; Mallik and Dasgupta, 2012; Salters and Dick, 2002; 

Schiano et al., 1997; Sobolev et al., 2005, 2007). The contribution of a lithology during magma 

genesis is controlled by four main parameters: (1) the fraction of the lithology in the mantle, (2) 

its solidus temperature, (3) its melt productivity, and (4) the mantle regime (potential 

temperature and thickness of the lithosphere). In this chapter, we discuss the current state of 

understanding of how these parameters affect the contribution of heterogeneities in magma 

generation in the Earth’s upper mantle across the three tectonic settings. We also review 

perspectives on magmatic differentiation, since intracrustal differentiation is the “last mile” of a 

primary magma’s journey from its origin as a partial melt of the mantle to its point of eruption. 

Disentangling the contributions from differentiation vs. source heterogeneity are therefore non-

trivial. To these ends, we review results from experimental studies simulating partial melting 

under a variety of upper mantle conditions and compositions. Then we compare experimental 

results with a compilation of nearly 60,000 compositions of natural volcanic rocks, melt 

inclusions, and plutonic cumulate rocks from ridges, intraplate settings, and volcanic arcs.  

 

2 Partial melting of a heterogeneous mantle 

2.1 Contribution of mantle lithologies to magma genesis 

 For the purpose of this section, we use the term “pyroxenite” to refer to mafic and ultramafic-

rich plutonic rocks that lack sufficient olivine (40%) to be classified as peridotites (Le Maitre et 

al., 2005). Based on their abundance in orogenic massifs, it is generally assumed that the Earth’s 

upper mantle contains 2 to 5% of pyroxenites (e.g., Bodinier and Godard, 2003). Magma 

compositions suggest that the mantle source can be significantly enriched locally (e.g., Sobolev 

et al., 2005) or even be exclusively composed of pyroxenites (e.g., Zhang et al., 2018). 

Compositions of the lithologies control their solidus temperatures and melt productivities 

(Hirschmann, 2000; Lambart et al., 2016; Pickering-Witter and Johnston, 2000), while thermal 

structure of the mantle and the crust control the melt fluxes and initial and final pressures of 

melting (Langmuir et al., 1992; Sleep, 1990; Tatsumi et al., 1983). The influence of composition 

on the solidus temperatures of mantle lithologies has been the subject of several experimental 

and theoretical studies (Hirschmann, 2000; Kogiso and Hirschmann, 2006; Kogiso et al., 2004; 

Lambart et al., 2016). These studies demonstrate that, at a given pressure, the solidus 

temperatures of anhydrous and CO2-free lithologies are mostly influenced by the bulk alkali 

content (Fig. 1) and Mg-number (Mg#=molar MgO/[molar MgO+molar FeOT] of the rock.  
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Figure 1. Pyroxenite and peridotite solidus temperatures determined experimentally as a function of the bulk alkali 

content for pressures between 1 and 5 GPa. The inset shows the linear regressions for each pressure and the 
corresponding error envelopes (1σ). References: Adam et al., 1992; Baker and Stolper, 1994; Borghini et al., 2017; 

Hirose and Kushiro, 1993; Hirschmann et al., 2003; Ito and Kennedy, 1974; Kogiso et al., 1998; Kogiso and 
Hirschmann, 2001,2006; Kogiso et al., 2003; Kornprobst, 1970; Kushiro, 1996; Lambart et al., 2009, 2012; 
Pertermann and Hirschmann, 2003a; Pickering-Witter and Johnston, 2000; Rosenthal et al., 2014, 2018; Schwab and 
Johnston, 2001; Spandler et al., 2008, 2010; Thompson, 1974, 1975; Tsuruta and Takahashi, 1998; Tuff et al., 2005; 
Walter, 1998; Wasylenki et al., 2003; Yasuda et al., 1994 

Fewer studies, however, discuss the controls on melt productivity. Melt productivities of mantle 

lithologies tend to increase with the contribution of clinopyroxene (cpx; Lambart et al., 2013; 

Pertermann and Hirschmann, 2003a; Pickering-Witter and Johnston, 2000; Spandler et al., 2008) 

and feldspar (Falloon et al., 2008; Lambart et al., 2009; Spandler et al., 2008) in the melting 

reaction. On the contrary, the presence of other accessory phases like rutile, quartz, spinel or 

olivine results in low melt productivities, explained by a low thermodynamic variance of the 

system (Pertermann and Hirschmann, 2003a). Figure 2 compares experimental melt fractions as 

a function of temperature at 1 and 3 GPa for various pyroxenite and peridotite compositions. The 

higher solidus temperature difference between pyroxenites and peridotites at 3 GPa than at 1 GPa 

partly reflects sampling bias (most experiments at 3 GPa were performed on alkali-richer and 

Mg-poorer lithologies than experiments performed at 1 GPa), but is also consistent with the 

parameterization of Lambart et al. (2016) that shows that the solidus temperature variation in 

pyroxenites significantly decreases with pressure.  
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Figure 2. Experimental melt fractions as functions of temperature for pyroxenites (blue: M7-16, star; M5-40, triangles; 

M5-103, diamonds; GV10, rectangles; Ito and Kennedy’s eclogite, circles; GA2, squares; G2, hexagons; B-ECL1, 
open diamonds) ) and peridotites (green: PHN-1611, circles; MM3, diamonds; DDMM, triangles; KR4003, square; 
KLB-1, open circles; HK66, rectangles; KG2, hexagons; KG1,open hexagons) at 1 and 3 GPa. The blue and green 
fields show the envelopes of melt fractions for pyroxenites and peridotites, respectively. References: Baker and 
Stolper (1994), Baker et al., (1995), Borghini et al. (2017), Hirose and Kushiro (1993), Hirschmann et al. (1998), Ito 
and Kennedy (1974), Kogiso and Hirschmann (2006), Kogiso et al. (1998), Kushiro (1996), Lambart et al. (2009), 
Pertermann and Hirschmann (2003a), Spandler et al. (2008), Walter (1998), Wasylenki et al. (2003). 

Peridotites are marked by a decrease in melt productivity when cpx disappears from the 

experimental assemblage. However, the productivities of pyroxenites and peridotites are 

scattered but largely overlap before cpx disappearance. Hence, the cpx disappearance in the 

mineralogical assemblage is the main parameter influencing the large difference in melt 

productivity between peridotites and pyroxenites.  

 

Figure 3. Effect of potential temperature (TP) and the final pressure of melting (Pf) on the contribution of pyroxenite 

G2 (Pertermann and Hirschmann, 2003a) in the aggregated magma Xmelt
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Finally, the thermal structure of the mantle and the crust mostly controls the potential 

temperature (TP) and the thickness of the lithosphere (considered as the final pressure of melting; 

e.g., Dasgupta et al., 2010). Decreasing TP or increasing the thickness of the lithosphere both 

result in an increase of the low-solidus component contribution (usually, the pyroxenite) in the 

melt by decreasing the relative height of the melting column where both lithologies are melting 

(Fig. 3) (Ellam, 1992; Humphreys and Niu, 2009; Niu et al., 2011; Sobolev et al., 2007).  

 

2.2 Peridotite vs. pyroxenite: experimental melt compositions 

2.2.1. Major elements 

Pyroxenites are usually separated into two groups: silica-excess (SE) and silica-deficient (SD) 

pyroxenites. The garnet–pyroxene thermal divide separating these two groups (defined by the 

Enstatite - Diopside - Alumina plane in the CaO-MgO-Al2O3-SiO2 tetrahedron; O’Hara, 1976) 

controls the melting relations of pyroxenites at high pressure (≥ 2 GPa; Kogiso et al., 2004) when 

cpx and garnet are both present in the mineralogical assemblage. Lambart et al. (2013) reviewed 

the melting phase relations of pyroxenites and showed that there is a large overlap of 

compositions between melt produced by the different mantle lithologies. As a rule, there is a 

progressive transition from the liquids derived from SE compositions to SD compositions to 

peridotites rather than a sharp compositional contrast. The extreme variability of the pyroxenite 

melts and the progressive transition between melts from different lithologies make finding good 

markers for the presence of pyroxenites in the source challenging. Yang and Zhou (2013) and 

Yang et al. (2016) suggested that the FC3MS (FeO/CaO-3*MgO/SiO2, in wt.%) parameter can 

help with distinguishing between pyroxenite- and peridotite-derived melts. Their analysis 

demonstrates that the upper boundary of the FC3MS value for peridotite melts is 0.65, while 

melts derived from pyroxenites cover a much larger range (-0.9 to 1.7).  

More recently, Yang et al. (2019) proposed two new parameters (FCMS and FCKANTMS) and 

showed that using log ratio‐based chemical markers help in reducing the temperature and 

pressure effects on the compositional heterogeneity of melts. However, we note that none of 

these parameters can help to distinguish between peridotite-derived and pyroxenite-derived melts 

for compositions producing low parameter values (i.e, mostly SD pyroxenites). 

 

2.2.2. First Row Transition elements.  

First Row Transition Element (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) concentrations in magmas 

have been recently suggested as good indicators of the mantle source mineralogy (e.g., Davis et 

al., 2013; Herzberg, 2011; Humayun et al., 2004; Le Roux et al., 2010, 2011; Prytulak and 

Elliott, 2007; Qin and Humayun, 2008; Sobolev et al., 2005, 2007). Le Roux et al. (2011) 

showed that during partial melting of the upper mantle, olivine and orthopyroxene do not 

significantly fractionate Mn and Fe from each other and melts from garnet-free peridotite are 

expected to have similar Mn/Fe ratios as the source. In contrast, clinopyroxene and garnet, the 

dominant minerals in pyroxenitic assemblages (Kogiso et al., 2004), show strong fractionations, 

such that melts of pyroxenites or eclogites would be expected to produce melts with low Mn/Fe 

compared to peridotite partial melts (Humayun et al., 2004). However, experiments by Le Roux 

and coworkers only explored peridotitic mineral compositions at a limited range of pressure (1.5-

2 GPa), while partition coefficients can vary depending on the compositions of the minerals and 
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melts (e.g., Davis et al., 2013; Wang and Gaetani, 2008) as well as with pressure and temperature 

(P-T) conditions (e.g., Matzen et al., 2013, 2017a).  

 

 

Figure 4. (a-b) Partition coefficient of Mn (a) and Fe (b) between minerals (garnet: circles; cpx: diamonds; opx: 

squares; olivine: triangles) as functions of the MgO content of the liquid for pyroxenites (SE: yellow; SD: blue) and 
peridotites (green). In (a), open symbols are higher accuracy analyses obtained by LA-ICP-MS or high current 
microprobe analyses (Davis et al., 2013; Le Roux et al., 2011; Pertermann et al., 2004). (c) Mn-Fe exchange partition 
coefficients (KD) between minerals and melts. The colored lines show the average KD calculated for each mineral 
using high accuracy measurements and the colored bands show the corresponding standard deviation. (d) Histogram 
showing the distributions of the 100*MnO/FeO ratios in experimental melts. References: Baker and Stolper (1994), 
Borghini et al. (2017), Davis et al. (2013), Falloon and Danyushevsky, (2000), Keshav et al., (2004), Kogiso and 
Hirschmann (2001, 2006), Kogiso et al. (2003), Lambart et al., (2009; compositions of the solid phases can be found 
at https://doi.org/10.6084/m9.figshare.9926885.v1), Lambart et al. (2013), Laporte et al. (2004), Le Roux et al. (2011), 
Pertermann and Hirschmann (2003b), Pickering-Witter and Johnston (2000), Pilet et al., (2008), Schwab and 
Johnston (2001), Walter (1998), Wasylenki et al. (2003), Yasuda et al. (1994), Yaxley and Sobolev, (2007). 

To take into account the potential effects of compositional and P-T variations, we plotted the 

partition coefficients between melt and mineral compositions using experiments reported in the 

literature on SE and SD pyroxenites and on peridotites. Partition coefficients for Fe and Mn 
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strongly depend on the MgO content of the melt (Fig. 4a,b), but the Mn–Fe KD are distinct for 

each mineral, and cpx-melt and garnet-melt Mn-Fe KDs are distinctly higher than olivine-melt 

and opx-melt KDs (Fig. 4c). In addition to this, and in agreement with the results from Le Roux 

et al. (2011), Mn-Fe KDs are independent of the composition. These results support the 

conclusions of Le Roux and coworkers: a mineral assemblage dominated by cpx and garnet will 

produce a melt with lower Mn/Fe ratio than a mineral assemblage dominated by olivine and 

orthopyroxene and, despite the large variability of bulk compositions that obscures this 

relationship, Mn/Fe ratio produced by pyroxenite-derived melts are generally lower than that in 

peridotite-derived melts (Fig. 4d).  

 

3 Interactions between chemical heterogeneities and peridotite 

Solidi of the nominally anhydrous subducted oceanic crust (e.g., Pertermann and Hirschmann, 

2003a) and sediments (e.g., Spandler et al., 2010) are at lower temperatures than the solidus of 

nominally anhydrous peridotite-bearing ambient mantle (Fig. 5a). This implies that when the 

ambient peridotitic mantle carrying chemical heterogeneities upwells along an adiabat in the 

upper mantle (Fig. 5b), the heterogeneities reach their solidi temperatures deeper than the 

peridotite. Thus, between the solidi of heterogeneities and the peridotite (indicated by the dashed 

areas in Figs. 5a and b), the partial melt from heterogeneities would encounter subsolidus 

(unmelted) peridotite. The presence of volatiles such as H2O and/or CO2 in the heterogeneities 

further depress the solidi to lower temperatures (e.g. Dasgupta et al., 2004; Hammouda, 2003; 

Hermann and Spandler, 2008; Poli and Schmidt, 1995; Skora and Blundy, 2010; Yaxley and 

Brey, 2004) implying that the heterogeneities begin to partially melt even deeper in the upper 

mantle while the surrounding peridotite is still subsolidus. (An exception to this is under highly 

oxidized regions where CO2 in peridotites may cause onset of carbonated silicate partial melting 

deeper than in the case of volatile-free peridotite (Dasgupta et al., 2013)).  

The partial melts from these heterogeneities are not in equilibrium with subsolidus peridotites 

and will react with them (e.g., Kogiso et al., 1998; Mallik and Dasgupta, 2012; Yaxley and 

Green, 1998).  Such a reactive melt-rock interaction can be illustrated by a simple binary phase 

diagram between olivine and quartz with double-eutectic at relevant pressures (Fig. 5c).  (The 

readers are reminded that the binary phase diagram, while a useful tool to illustrate the first-order 

reactive crystallization process, does not capture the complexities imposed on the phase 

equilibria by a multi-component system that is a better analog to natural systems.) The siliceous 

partial melts from the heterogeneities lie on the liquidus surface of the pyroxene-quartz binary, 

while the peridotite lies below the solidus of the olivine-pyroxene binary. When the siliceous 

partial melts react with peridotite, the bulk composition of the melt-peridotite mixture is located 

between the partial melt and peridotite. Whether the bulk composition lies in the pyroxene-quartz 

binary or the olivine-pyroxene binary depends on the melt-rock proportion, where a higher 

proportion would place the bulk composition closer to the pyroxene-quartz binary. Thus, the 

interaction between the partial melt of the heterogeneities and peridotite would result in reactive 

crystallization, as observed in the phase diagram. The first order reaction that takes place in this 

context is as follows: 

 (Mg,Fe)2SiO4           +       SiO2                      =                (Mg,Fe)2Si2O6                 (1) 

olivine (peridotite)  partial melt (from heterogeneity)                     pyroxene       
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Figure 5. (a) Solidus of nominally anhydrous (NA) peridotite, recycled oceanic crust (MORB) and sediment plotted in 
pressure-temperature space. Also plotted for comparison are the range of adiabats from mid-ocean ridges to plume-
settings with the lower end bracketed by mantle potential temperature of 1315 °C (McKenzie et al., 2005) and the higher 
end by 1550 °C (Herzberg et al., 2007), as well as hot, intermediate and cold subducted slab geotherms (Syracuse et 
al., 2010). The dashed area indicates P-T space where partial melt from recycled oceanic crust and sediments would 
react with the surrounding subsolidus peridotite. (b) Cartoon showing a slice of upwelling peridotitic mantle with pods 
of lithological heterogeneity (e.g. 5 wt.% recycled oceanic crust). NA recycled oceanic crust encounters its solidus at a 

depth ≈130 km, while the NA peridotite is still below the solidus. In the dashed area (the same as in panel a), partial 
melt derived from recycled oceanic crust undergoes reactive infiltration through the surrounding subsolidus peridotite. 
(c) Binary phase diagram between olivine and quartz (not to scale) with double eutectic, at 2.5 GPa (Chen and Presnall, 
1975). Dashed gray lines in the pyroxene-quartz binary represent the solidus and liquidii in a pure MgO-SiO2 system, 
solid lines represent solidus and liquidii with alkalis included. ‘1’ indicates a bulk composition with low melt-rock ratio 
resulting in complete consumption of the melt and producing olivine-pyroxene residue. ‘2’ indicates a bulk composition 
with high melt-rock ratio which produces a pyroxene residue by consuming olivine, and a residual melt that is less 
siliceous and more magnesian than the melt directly derived from chemical heterogeneities. (d) Streikeisen diagram 
for ultramafic rocks. The peridotite KLB-1 (Takahashi, 1986) is representative of a shallow upper mantle peridotite. The 
other symbols plotted are residues of reactive crystallization between peridotite and melt derived from low to moderate 
degree of partial melting of recycled oceanic crust with various proportion of CO2, from 0 wt.% (NA, Mallik and 
Dasgupta, 2012) to 5 wt.% (BAC, Mallik and Dasgupta, 2014, 2013) at 2.5 - 3 GPa. The percentage next to the symbols 
represent the initial proportion of melt to peridotite.  
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A high melt to rock proportion would result in the consumption of olivine and melt to crystallize 

pyroxene, with remaining partial melt that is less siliceous and more Mg-rich than the partial 

melt of the heterogeneity. A low melt to rock proportion would result in complete crystallization 

of the partial melt to form pyroxene, with residual olivine from the peridotite. Similar reasoning 

can be made with other heterogeneity compositions: silica deficient pyroxenites will result in 

olivine production at the expense of orthopyroxene, but for a low melt-rock ratio, the melt will 

be consumed during the reaction (Lambart et al., 2012). Thus, such a process of reactive 

crystallization between partial melt from a heterogeneity and peridotite not only produces 

distinct residual partial melt compositions, but also contributes to further heterogeneity in the 

upper mantle (Fig. 5d). Due to the interaction of heterogeneities with peridotite, such melt-rock 

reactions may occur beneath mid-ocean ridges (Borghini et al., 2017; Lambart et al., 2012), 

ocean islands (Mallik and Dasgupta, 2012, 2013, 2014; Sobolev et al., 2005), continental 

lithosphere (Chen et al., 2017; Kiseeva et al., 2013), in subduction zones near depths of arc 

magma generation (Kelemen, 1995; Mallik et al., 2015, 2016; Prouteau et al., 2001; Tatsumi, 

2001; Wang and Foley, 2018), and as deep as the transition zone (Kiseeva et al., 2013; Thomson 

et al., 2016). 

 

4 Sampling melts of the mantle - approach and overview 

In this section, we present a brief, and by no means comprehensive, survey of the magma 

generation processes and compositions of natural samples from three tectonic settings on Earth: 

mid-ocean ridges, ocean islands, and volcanic arcs. For each setting, we review experimental 

constraints on magma genesis, followed by a discussion of the compilation of natural 

compositional data. To facilitate as many comparisons between experimental data and natural 

data across the three settings, we focus exclusively on major element compositions. Obviously, 

using only major elements rather than emphasizing only primitive samples presents limitations 

for fingerprinting the nature of the melting source. Our goal here is not to identify the source 

characteristics, since trace element ratios and isotopes would be better suited for that task, but to 

make broad comparisons between experimental, modeling, and natural observations in terms of 

petrogenetic processes across the major tectonic settings of magmatism on Earth.   

Supplementary Data and literature sources used in this review are summarized in Table S1 and 

are all reported in Supplementary Tables S6, S7 and to S8. Owing to the extremely large 

number of samples, particularly for arc volcanic rocks (nearly 40,000), we contoured all the 

volcanic rock data using a smoothed histogram method (Eilers and Goeman, 2004), using 75 

histogram bins in the x and y direction and a positive smoothing parameter (λ) of 1.5 (higher 

values of λ lead to more smoothing; a value near zero would result in a plot of essentially the raw 

data). Density contours for volcanic rocks in Fig. 6 were constructed at intervals of 10%.  We 

applied the same parameters in the contouring for the volcanic rock data from each tectonic 

setting so side-by-side comparisons can be accurately made. Owing to the small number of 

plutonic cumulate rocks (<500 at any given setting) and melt inclusions (<200, from volcanic 

arcs only), we did not contour these datasets.      

 

4.1 MORB 

4.1.1 Intracrustal processing.  
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The relatively simple geodynamic setting of mid-ocean ridges serves as a baseline model for 

mantle melting and magma generation. A primary magma is one formed during adiabatic 

decompression melting of mantle peridotite and which has not been modified during ascent and 

eruption. It has long been recognized that such a magma is rarely, if ever, sampled at mid-ocean 

ridges (or any tectonic setting for that matter) – the average Mg# of all MORB is 56, 

significantly lower than the value of ~70 expected for equilibrium with mantle peridotite. Three 

main factors are involved in producing the compositional spectrum of mid-ocean ridge basalts 

(MORBs): 1) mantle source heterogeneity, 2) style of mantle melting, and 3) intracrustal 

processing. In this section, we focus on the role of intracrustal processing, which marks the 

boundary between the melting regime and the onset of crystallization, differentiation, eruption 

and eventual sampling.  

In order to go from sampled MORBs from the seafloor to how such MORBs looked when they 

parted ways with the mantle, the contributions from crystallization-differentiation, which occur 

in the crust must first be understood. Intracrustal processing of MORB can be broadly considered 

as variations on the theme of fractional crystallization (FX).  The simplest scenario, and, today, 

the paradigm, is that MORB follow a differentiation path under anhydrous, low pressure 

conditions, evolving towards the classic Fe-enrichment (tholeiitic) trend (O'Hara, 1965). 

Experiments and observations of natural MORBs indicate the generalized low-pressure 

crystallization sequence of olivine → olivine + plagioclase → olivine + plagioclase + 

clinopyroxene → plagioclase + clinopyroxene + orthopyroxene + Fe-Ti oxides (Coogan, 2014; 

Grove et al., 1993). However, detailed study of MORB over the past decades reveal several 

inconsistencies with the simple FX model: 1) phenocryst assemblages in MORB are not 

representative of cotectic proportions as predicted by FX (Francis, 1986), 2) FX models require 

fractionation of clinopyroxene, but it is not commonly observed as a phenocryst, and 3) some 

incompatible elements, like Th, are overly enriched in global MORB compared to predictions 

from simple fractional crystallization (Coogan and O’Hara, 2015; Jenner and O'Neill, 2012).  

Thus, more complex scenarios have been hypothesized to explain the mismatch between trace 

element data and simple fractional crystallization models. The two major variations on the 

simple fractional crystallization model are 1) in situ crystallization, where crystallization of a 

magma occurs in a progressive solidification front and involves return of interstitial melt to the 

magma chamber (Coogan and O’Hara, 2015; Langmuir, 1989; McBirney and Noyes, 1979) and 

2) “RepTapFrac”, wherein a magma chamber is periodically replenished (Rep), melt extracted 

(Tap), and then fractionally crystallized (Frac) (Albarede, 1985; O'Hara, 1977; O’Neill and 

Jenner, 2012). Additionally, recent studies suggest an alternative – reactive porous flow/melt-

rock reaction – as another mechanism that could reconcile several of the MORB conundrums, 

particularly the observed over-enrichment in incompatible trace elements (Coumans et al., 2016; 

Gao et al., 2007; Lissenberg and MacLeod, 2016; Lissenberg et al., 2013). Although trapped 

melt and melt-rock reaction (Lissenberg and Dick, 2008) in the lower crust and even the oceanic 

mantle lithosphere are increasingly recognized as additional processes contributing to MORB 

compositional evolution (especially in the case of incompatible trace elements), the evolved 

nature of MORB (Mg# ~56) compared to primary mantle melts (Mg# ~70) and the overall 

fractionation of incompatible elements between lower oceanic crust and upper oceanic crust 

(Coogan, 2014) still broadly support a fundamental role for crystal-liquid separation in MORB 

petrogenesis. 
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4.1.2 Natural MORBs & their cumulates.  

The perspective on MORB and oceanic crust generation has been largely focused on 

extrusive rocks due to accessibility – there are several thousands of samples of MORB (pillow 

lavas, glasses) but far fewer samples of complementary subcrustal MORB cumulates (Table S5). 

A coupled perspective of both MORBs and their cumulates can also be illustrative of the factors 

involved in MORB evolution. In Figure 6a-d, we plot both global MORBs (both lavas and 

glasses from the database of (Gale et al., 2013)) and a recently compiled global MORB cumulate 

database (Chin et al., 2018) in Harker-style diagrams. Compared to other tectonic settings 

(discussed in later sections), the combined global database of MORBs and MORB cumulates 

collectively fall on tight, minimally scattered compositional trends. Throughout a wide range of 

Mg# (and thus differentiation index), the SiO2 content of MORBs remains relatively constant at 

~55 wt.% (Fig. 6a). Crystal fractionation of olivine, followed by olivine + albitic plagioclase, is 

apparent in plots of Al2O3 vs. Mg# (Fig. 6b) and Na2O vs. Mg# (Fig. 6c). The consistently low 

K2O vs. Mg# trend of MORB cumulates (Fig. S1) also suggests that crystal-liquid segregation is 

generally efficient (Natland and Dick, 1996). Finally, the classic tholeiitic magma series is 

revealed in the cumulate counterparts of MORBs – the Fe-enrichment trend of MORB is 

balanced by the Fe-poor nature of early MORB cumulates, and the late precipitation of Fe-Ti 

oxides in oxide gabbros is clearly shown in a marked increase in TiO2 at Mg# ~50 (Fig. 6d) 

(Chin et al. 2018). To first order, major element systematics of MORB + MORB cumulates 

supports crystal-liquid segregation along tholeiitic differentiation trends. Yet, additional 

observations, such as reaction textures and complex zoning patterns (Lissenberg and MacLeod, 

2016), isotopic heterogeneity (Lambart et al., 2019), and phase assemblage disequilibrium (Gillis 

et al., 2014) in associated cumulates, seem to prevent petrologists from establishing a clear 

genetic link between them and MORB exclusively through fractional crystallization. While a 

summary of trace element systematics of MORB and MORB cumulates is beyond the scope of 

this study, conflicts persist as to the roles of melt-rock reaction, secondary melt infiltration - as 

shown by trace element studies - versus fractional crystallization, which is broadly supported by 

major element trends. 

 

4.1.3 Primary MORB. 

Co-variations observed in MORB suites of isotopic ratios of heavy elements (e.g., Sr, Nd, Pb, 

Os, Hf), being insensitive to melting and fractionation processes, are usually attributed to mantle 

heterogeneity (Hofmann, 2003). Additionally, timing constraints from U-series disequilibria 

suggest that melt extraction from the mantle is rapid (Elliott & Spiegelman, 2003; Elkins et al., 

2019 and references therein). It has been suggested that high-permeability channels from the 

melt source region toward the surface must exist (Kelemen et al., 1995) to satisfy these 

constraints. Numerical models (e.g., Weatherley and Katz, 2012, 2016) show that the formation 

of these channels would be facilitated by the presence of lithological heterogeneities in the 

mantle owing to thermal interaction between partially molten and subsolidus lithologies. 

To decipher source signals, MORB need to be corrected for crystal fractionation. Once corrected 

for low-pressure fractionation (Klein and Langmuir, 1987), MORB show evidence for variability 

in major-element compositions, likely due to compositional (e.g., Niu and O’Hara, 2008) or 

thermal (e.g., Dalton et al., 2014; Langmuir et al., 1992; Gale et al., 2014) variability in the 
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source. However, Neave et al. (2019) recently showed that the major element composition of a 

primitive magma also affects the efficiency with which it crystallises.  

 
Figure 6. Major element oxides (wt.%) vs. Mg# for lavas (gray circles), cumulates (black circles), and melt inclusions 

(magenta symbols, from volcanic arcs only). Colored curves show the density contours (at intervals of 10%) for 
volcanic rocks. 

Additionally, Bennett et al. (2019) demonstrated that the vertical extent of mid-ocean-ridge 

magmatic systems is not restricted to the first few kilometers as previously thought, but could 

extend down to the base of the lithospheric mantle. Thus, predominantly shallow-level fractional 
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crystallization of MORB may be more complex than commonly thought. Finally, in comparison 

to ocean island and arc basalts, the range of primary MORB major-element compositions stays 

restricted. This restricted variability can be explained by significant low-pressure magma mixing 

(e.g., Shorttle, 2015; Lambart et al., 2019), and/or by similar melting reactions and melt 

compositions generated by pyroxenites and peridotites in the melting zone beneath mid-ocean 

ridges (e.g., Lambart et al., 2009).  

It is beyond the scope of this short section to discuss all of these contributing factors to MORB 

geochemistry in detail and we refer the reader to comprehensive reviews on MORB petrogenesis 

in the literature (Gale et al., 2014; Langmuir et al., 1992; Lissenberg et al., 2019; Niu and 

O’Hara, 2008; Rampone and Hofmann, 2012; White and Klein, 2014). 

 

4.2. Oceanic Island Basalts 

Ocean island basalts (OIB) have received considerable attention in the literature given 

their potential as a proxy to unravel the composition and thermal state of the mantle. Isotopic and 

trace element diversity in ocean island basalts are indicative of chemically heterogeneous sources 

such as the presence of enriched and depleted mantle reservoirs, recycled oceanic crust, 

continental crust and sediments. The readers are referred to the seminal reviews by Hofmann 

(1997, 2003) for details on how geochemical characteristics of oceanic basalts give us insight 

into the dynamics of the mantle. 

 

4.2.1 Source lithologies of primitive OIB 

 Evidence for presence of recycled material in the mantle source of OIB come from 

major-, trace-element and isotopic compositions. In fact, previous studies have argued that the 

high TiO2 contents (> 2.5 wt.%) of primary OIB are indicative of the presence of recycled 

oceanic crust in the source (Fig. 6f; Prytulak and Elliott, 2007). In addition, OIB compositions 

extend to very low silica contents (Fig. 6e) and primary magma with very low SiO2 

concentrations (≤ 46 wt.%) also display the highest 206Pb/204Pb ratios, indicative of recycled crust 

in the source (Jackson and Dasgupta, 2008). Such low SiO2 contents are observed in 

experimental partial melts of recycled heterogeneities such as silica-deficient pyroxenites 

(Hirschmann et al., 2003; Kogiso et al., 2003; Lambart et al., 2009) and carbonated oceanic crust 

(Mallik and Dasgupta, 2014). However, most partial melts of recycled heterogeneities do not 

reach Mg# 73 (Kogiso et al., 2004; Pertermann and Hirschmann, 2003b). Such high Mg# can be 

explained if both pyroxenite- and peridotite-derived melts contribute to OIB genesis or if the 

pyroxenite-derived melt reacts with the peridotite before directly contributing to magma genesis 

(Sobolev et al., 2005,2007; Mallik and Dasgupta, 2012, 2013, 2014; Phipps Morgan, 2001). In 

fact, the process of reactive crystallization as a consequence of such a reaction between 

pyroxenite (eclogite)-derived melt and peridotite is described in Section 3 and results in MgO 

enrichment and SiO2 depletion of the eclogite melt. In summary, it is widely accepted that the 

mantle source of OIB is heterogeneous, but the lithological nature and chemical composition of 

this heterogeneity is still debated (e.g., eclogite, pyroxenite, hybrid lithologies, refertilized 

peridotites). However, the compositions of the various mantle components control their 

contribution to magma genesis by affecting their melt productivity (Lambart et al. 2016) and 

reactivity with the surrounding mantle (Lambart et al., 2012; Mallik and Dasgupta, 2012, 2014; 

Sobolev et al., 2005).  
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To illustrate the importance of the mode of participation of the heterogeneities in the 

source of OIBs and their compositions, we perform an exercise as described below. We remind 

the readers that the primary goal of this exercise is to highlight the effects of the choice of the 

melting model, and less to quantify the proportion of pyroxenite in the mantle source of OIB. We 

first consider a simple case where deeper melt derived from recycled crust is channelized 

through the peridotite matrix (dashed region in Fig. 5a, b) and mixes with peridotite partial melt 

at shallower depths to produce the observed primary magma compositions. We call this the 

‘melt-melt mixing model’. In this model, melt-rock interactions are not taken into account. We 

consider two pyroxenite compositions: G2, a MORB-type eclogite (Pertermann and Hirschmann, 

2003a) and MIX1G, the average natural pyroxenite (Hirschmann et al., 2003), and estimate their 

proportions in the sources of ocean islands globally as follows: we use the primary melt 

compositions and LAB (Lithosphere – Asthenosphere boundary; proxy for the final depth of 

melting) thicknesses at the time of volcanism for each individual ocean island as reported by 

Dasgupta et al., (2010) and we use PRIMELT3 MEGA.XLSM software (Herzberg and Asimow, 

2015) to estimate the potential temperature (TP) for each island. As described in Section 2, the 

melts derived from eclogitized crust (or any lithologies dominated by clinopyroxene and garnet) 

would have a lower Mn/Fe than partial melts of peridotite or high Mg-pyroxenite containing 

olivine and/or orthopyroxene. Thus, olivines that would crystallize from a melt with 

contributions from clinopyroxene and garnet bearing pyroxenites would also mirror the low 

Mn/Fe signatures. Sobolev et al., (2007) used this observation to derive an empirical relationship 

between Mn/Fe of olivines in equilibrium with primary basalts and the contribution of 

pyroxenite in the aggregate basaltic melts (𝑋𝑚𝑒𝑙𝑡
𝑝𝑦𝑟

): 

𝑋𝑚𝑒𝑙𝑡
𝑝𝑦𝑟

= 3.48 −  2.071 × (100𝑀𝑛/𝐹𝑒)       (2) 

We note that Matzen et al. (2017b) demonstrated that the Mn content variation in early 

crystallizing olivines can be explained by partial melting of peridotite over a range of pressures, 

and that recycled lithologies may be present in the source but are not required to explain the Mn 

variations in olivines. However, the goal of the following exercise is to simply demonstrate that 

the estimated proportion of pyroxenite in the mantle source of OIBs varies with the choice of 

melting model and composition of pyroxenite. 

With the PRIMELT3 MEGA.XLSM software, we calculated the Mn/Fe ratio of the olivine in 

equilibrium with the primary OIB and used Sobolev’s proxy to estimate 𝑋𝑚𝑒𝑙𝑡
𝑝𝑦𝑟

 from the ocean 

islands. Finally, the proportions of pyroxenites in the source of the ocean islands (𝑋𝑠𝑜𝑢𝑟𝑐𝑒
𝑝𝑦𝑟

) are 

calculated using Melt-PX (Lambart et al., 2016) and assuming the following relation that 

includes a first-order assumption that the proportion of pyroxenite in the melt is weighted by the 

abundance of pyroxenite in the source: 

𝑋𝑚𝑒𝑙𝑡
𝑝𝑦𝑟

= ൫𝑋𝑠𝑜𝑢𝑟𝑐𝑒
𝑝𝑦𝑟

× 𝐹𝑓
𝑝𝑦𝑟

൯/൫𝑋𝑠𝑜𝑢𝑟𝑐𝑒
𝑝𝑦𝑟

× 𝐹𝑓
𝑝𝑦𝑟

+ ൫1 − 𝑋𝑠𝑜𝑢𝑟𝑐𝑒
𝑝𝑦𝑟

൯ × 𝐹𝑓
𝑝𝑒𝑟൯ (3), 

with 𝐹𝑓
𝑝𝑦𝑟

 and 𝐹𝑓
𝑝𝑒𝑟

, the final degree of melting of the pyroxenite and the peridotite, respectively, 

when the parcel of upwelling mantle reaches the LAB. 

In a second set of calculations, we use the same constraints on TP and Pf, but consider that 

melt derived from G2 first reacts with the peridotite before contributing to magma genesis (e.g., 

Sobolev et al., 2005). We call this the ‘reactive crystallization model’. Mallik and Dasgupta 

(2014) used published experimental results to derive an empirical relation that predicts the major 

element concentrations in a primary melt that forms by reactive crystallization of partial melts 
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from eclogite-derived crust (similar to G2) as they undergo porous infiltration through a 

subsolidus peridotite matrix. While the proxy of Sobolev et al. (2007) is based on the trace 

element compositions in olivine (equation 1), Mallik and Dasgupta’s model is based on the 

major element composition of the primary magmas. Using two independent models allows us to 

test for the consistency of such empirical relationships. In Mallik and Dasgupta’s model, melt-

derived from the recycled crust reacts with the peridotite to form a hybrid lithology and a distinct 

melt. The distinct melt is in chemical and thermal equilibrium with the hybrid lithology, and this 

melt, by mixing with peridotite-derived melt results in the observed primary magma 

composition. The empirical relation of Mallik and Dasgupta provides the fraction of recycled 

crust-derived melt required to produce the new hybrid lithology (𝑋𝑟𝑙), and the proportion of melt 

derived from the hybrid lithology (𝑋𝑚𝑒𝑙𝑡
ℎ𝑦𝑏

). Using these, we can estimate the proportion of G2 

(before melting) in the source using the following equation (Sobolev et al., 2005) 

𝑋𝑠𝑜𝑢𝑟𝑐𝑒
𝐺2 =

𝑋𝑟𝑙

𝐹𝐺2×(
1−𝑋

𝑚𝑒𝑙𝑡
ℎ𝑦𝑏

𝑋
𝑚𝑒𝑙𝑡
ℎ𝑦𝑏 ×

𝐹
𝑓
ℎ𝑦𝑏

𝐹
𝑓
𝑝𝑒𝑟 +

1−𝐹𝐺2

𝐹𝐺2 ×𝑋𝑟𝑙+1)

  (4), 

where,  𝐹𝐺2(= 8.9 wt.%) is the melting degree undergone by G2 before reacting with the 

surrounding mantle, and 𝐹𝑓
ℎ𝑦𝑏

 and 𝐹𝑓
𝑝𝑒𝑟

, the melting degrees of the hybrid lithology and the 

peridotite calculated with Melt-PX when the mantle parcel reaches Pf. Fig. 7 presents estimated 

𝑋𝑠𝑜𝑢𝑟𝑐𝑒
𝑝𝑦𝑟

 for each major group islands in the three oceans for the two models of melting. 

Calculations have been performed on individual islands listed in Dasgupta et al. (2010) (see 

Supplementary Table S9). To facilitate the comparison, we report the results averaged by 

island groups and the error bars show the variability between islands from the same group. 

Hence, a group with only a single island, such as Iceland, has no error bars. The proportion of 

pyroxenites in the mantle source significantly varies between the type of calculations, but also 

between and within each island group. Using the ‘melt-melt mixing model’ and the composition 

G2, the average proportion of pyroxenite in the source contributing to OIB genesis is ~34 % and 

varies from 8% (Balleny) to 100% (Tristan da Cunha and Gough). Due to its higher solidus 

temperature than G2 (Lambart et al., 2016), using the composition MIX1G results in an overall 

higher proportion of pyroxenite in the source required to explain the Mn/Fe ratio (~54% in 

average). Proportions of G2 estimated with the ‘reactive crystallization model’ vary from 0% 

(Iceland and Amsterdam)  to 61% (Cameroon and Fernando de Norhona). In summary, despite 

constraints on the mantle temperature and final pressure of melting, the choice of the model and 

composition of the enriched component/heterogeneity will significantly affect the estimates of its 

proportion in the mantle source of magmas. Despite these discrepancies, these models converge 

to the conclusion that a large fraction [39 (± 28)%] of recycled material is present in the mantle 

source of OIB .  
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Figure 7. Calculated average proportions of pyroxenite in the source of the main island groups using a simple melting 

model (‘melt-melt mixing model’) with either G2 (filled circles) or MIX1G (diamonds) as pyroxenitic component and 
using a ‘reactive crystallization model’ using G2 (open circles) as pyroxenitic component. The error bars on G2 
fractions correspond to one standard deviation on each island group calculated from fractions obtained for individual 
island (Table S9). (Black and grey error bars show variability inside each island group calculated using the melt-melt 
mixing model with G2 and using the reactive crystallization model, respectively).  

 

We also note there is no strong correlation between the estimated proportion of pyroxenite in the 

source and TP (Fig. 8a) or LAB thickness (also Pf ,Fig. 8b). This result contrasts with Sobolev et 

al.’s (2007) conclusions suggesting that more energetic (i.e., hotter) plumes were more likely to 

carry a large amount of recycled crust into the upper mantle due to higher buoyancy. However, it 

is worth noting that the model of Herzberg and Asimow (2015) assumes a peridotite source. 

Herzberg and Asimow (2008) pointed out that if the mantle source contains pyroxenite and/or 

volatiles, it might result in overestimation of the calculated potential temperatures by ~100°C. 

This is consistent with Mallik and Dasgupta (2014) who showed that an OIB source with 120-

1830 ppm CO2 (Dasgupta and Hirschmann, 2010) translate to an excess estimation of TP 

between 2 and 73 °C (assuming 5-10% partial melting at the source and incompatible behavior 

of CO2 during partial melting). This calls for a recalibration of mantle thermometers in the future, 

to take into account the effects of a heterogeneous and volatile-bearing mantle. In fact, a higher 

TP will result in a lower contribution of the pyroxenite component in the magma (Fig. 3). In 

other words, overestimating the potential temperature will also result in an overestimation of the 

pyroxenite fraction required in the source for a given proportion of pyroxenite in the magma. 

Nevertheless, consistent estimates for the potential temperatures for Hawaii and MOR by other 

independent methods, such as calibrating major element compositions of liquids with 

temperature (Lee et al., 2009; Purtika, 2008), suggest that this temperature overestimation is 



Confidential manuscript, accepted for publication In: Konter J., Ballmer M, Cottaar S, & Marquardt H. (Eds. ), 

Mantle Convection and Surface Expressions, AGU books 

 

limited and support the decoupling between the thermal state of the lithosphere and the amount 

of recycled material in the mantle.  

Figure 8. Calculated average proportions of G2 using the simple melting model (first set of calculations) as a function 
of the average TP (a) and the average pressure of the LAB (b). Same color code as in Fig. 7. The error bars 

correspond to the standard deviation on each island group calculated from fractions obtained for individual island.  

 

4.2.2 Natural OIB & their cumulates 

OIB display a wider range of major element compositions compared to MORB, but not 

nearly as wide and variable as arc lavas (Fig. 6). Both MORB and OIB show a population 

density peak around Mg# = 55, suggesting similar degrees of crystal fractionation.  Thus, we 

could infer that the fractionation process for MORB and OIB are relatively similar and the larger 

range of compositions displayed by OIB is not due to fractionation processes, but instead reflect 

a larger variability in primary magma compositions. In detail, major element trends of OIBs 

differ from MORB trends in the following ways: 1) OIB compositions extend to lower SiO2 over 

similar Mg# intervals compared to MORB, 2) OIBs have higher TiO2 (>2.5 wt.%) than MORB 

(~2 wt.%), and much higher than arc lavas (<2 wt.%) , 3) Fe-enrichment is not as extreme in OIB 

as it is for MORB, 4) OIBs follow a trend of Al2O3 enrichment with decreasing Mg#, whereas 

MORB become depleted in Al2O3 , 5) OIBs achieve higher and more variable Na2O and K2O 

contents compared to MORBs (Fig. 6, Supplementary Fig. S1). The spread in FeOT, Al2O3, 

Na2O, and K2O in OIBs versus MORBs likely reflects larger variability in primary OIB magma 

compositions. Part of this contrast of variability between OIB and MORB is due to the extensive 

magma mixing at mid-ocean ridges that significantly restricts the range of primitive 

compositions displayed by MORB (Batiza, 1984; Cipriani et al., 2004). In all the binary oxide 

plots (Fig. 6, middle panel), the contoured OIB data are skewed toward higher Mg# values 

compared to MORB, and (near-) primary magmas are commonly sampled, suggesting more 

limited mixing in oceanic island settings. In addition, and as previously noted, pyroxenites and 

peridotites produce melt with very similar major element compositions at pressures relevant for 

mid-ocean ridges (i.e., 1-1.5 GPa, Lambart et al., 2009; Borghini et al., 2017). However, at 

higher pressures, pyroxenite melting relationships are controlled by the presence of the 

pyroxene-garnet thermal divide (Kogiso et al., 2004) and can produce highly contrasted melt 

compositions. Hence, the same amount of lithological heterogeneity in the mantle source results 
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in a higher diversity of magma compositions in OIB settings than in MORB settings. The silica-

poor OIB compositions, for instance, are consistent with the partial melting of Si-deficient 

pyroxenites at high pressure (Hirschmann et al., 2003). As previously mentioned, the high TiO2 

contents are also consistent with the presence of recycled oceanic crust in the OIB source. 

Finally, the sources of OIBs are usually assumed to be more heterogeneous than the 

mantle source of MORBs, mostly because primary OIBs also display larger variability in trace 

element and isotopic ratios than MORBs (Hofmann, 1997, 2003). Two causes for OIBs being 

more heterogeneous in their source than MORBs are proposed as follows. OIBs show a wider 

range of TPs, spanning to higher TPs than that of MORBs (Fig. 5a), and a hotter mantle may 

result in increased thermal buoyancy of dense garnet-bearing heterogeneities, and therefore, 

easier for such heterogeneities to accumulate within the upper mantle source of the OIBs (Brown 

and Lesher, 2014; Sobolev et al., 2005). Also, a thicker lithosphere beneath OIBs, and therefore 

a higher final pressure of melting, may preserve the chemical signature of heterogeneities better 

due to lesser degree of partial melting of peridotites (Sobolev et al., 2007). However, we do not 

observe any correlation between the proportion of chemical heterogeneity and TP or Pf (Fig. 8), 

implying that the thermal state of the mantle and the proportion of mantle heterogeneity are 

decoupled. This casts doubt on the above two propositions about why MORBs may have less 

heterogeneous sources than OIBs. Ultimately the answer may lie in the process of melt 

generation such that MORBs undergo greater magma mixing than OIBs (e.g. Zindler et al., 

1984), resulting in a tighter range in the concentrations of trace elements and isotopic ratios, and 

the presence of variability in geochemical signatures in OIBs (or their lack in MORBs) may not 

be an indicator of how heterogenous their sources are. 

 

4.3. Arc magmas 

4.3.1 Arc magma genesis - a complexity of factors  

Compared to the relatively simple geometry of spreading centers at mid-ocean ridges and the 

non-tectonic origin of OIBs, the geodynamic setting of volcanic arcs is far more complex, 

involving multiple moving parts: a hydrated downgoing plate, a convective mantle wedge 

continuously fluxed by volatiles from the downgoing plate, and overriding plate lithosphere, 

which itself may be old and heterogeneous (e.g. at continental arcs). As a result, arc magmas 

worldwide show incredible compositional diversity compared to MORBs and OIBs, reflecting 

the interplay of the different tectonic components involved. Arc magmas range from basalts (40 

– 52 wt.% SiO2) to rhyolites (>70 wt.% SiO2) (Fig. 6i). Mg#’s of arc volcanic rocks range from 

<10 to ~80 (Fig. 6, right panel). Such compositional variation is attributed to both primary 

processes – e.g. those involving melting and melt-rock interaction of peridotitic source rocks in 

the mantle wedge (and generation of primary melts sensu stricto), and secondary processes – 

such as fractional crystallization and assimilation of pre-existing crust. In addition, there is 

increasing recognition that partial melting and involvement of non-peridotitic source rocks, such 

as the downgoing, metamorphosed oceanic slab and sediments, may also contribute to arc 

magma genesis (as discussed in section 4.3.3). Below, we review experimental constraints on 

primary melt generation in arcs, discuss recent advances in non-peridotitic contributions to arc 

magmatism, and summarize key major element compositional trends in natural arc magmas and 

their cumulates.        
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4.3.2 Experimental perspectives on primary arc magma generation: melting of the peridotitic 

mantle wedge  

We will first investigate the formation of primary arc magmas derived from the peridotitic 

mantle wedge. The geodynamic scenario for such melting, which constitutes the majority of arc 

magmatism, is devolatilization of the downgoing slab which induces hydrous flux melting of the 

dominantly peridotitic mantle wedge (Grove et al., 2006; Till et al., 2012). The chemistry of 

primary arc magmas depends on the pressure-temperature conditions of partial melting in the 

mantle, composition of sub-arc peridotite and slab fluxes, and the H2O content, and oxygen 

fugacity at the source of melting. Previous experimental studies have investigated the effect of 

H2O on partial melting of peridotite (e.g., Gaetani and Grove, 1998; Grove et al., 2006; Hirose, 

1997; Hirose and Kawamoto, 1995; Tenner et al., 2012; Till et al., 2012), and mixtures of 

hydrous siliceous crustal melt and peridotite (Mallik et al., 2015, 2016; Pirard and Hermann, 

2014, 2015; Prouteau et al., 2001; Rapp et al., 1999). The partial melts span a wide range in total 

alkali-silica space covering the entire spectrum of primary arc magmas from basaltic to andesitic 

and basaltic trachy-andesitic (Fig. 9a). 

 Given the importance of H2O in subduction zone magmatism, it is important to constrain 

the effect that H2O has on the chemistry of magmas produced in the sub-arc mantle and 

experiments investigating partial melting behavior of the sub-arc mantle can give us insight into 

this. Experimental melt compositions that co-exist with both olivine and orthopyroxene (the two 

most abundant minerals in the upper mantle) are compiled and their H2O contents are plotted 

against their silica contents (Fig. 9b). Two trends emerge. Melt compositions produced at 

pressures lower than 2 GPa show increasing silica contents with H2O, whereas, for melt 

compositions produced at pressures greater than 2 GPa, silica contents are anti-correlated with 

H2O (Fig. 9b). This observation indicates that pressure and H2O contents affect the chemistry of 

partial melts, and approach towards the development of a model of subduction zone melting 

requires that we understand the reason behind such a trend. Mallik et al. (2016) explained that 

the increasing SiO2 trend at lower pressures is caused by the expansion of olivine stability over 

orthopyroxene with H2O. The reverse trend at higher pressures is caused by an expanded 

orthopyroxene stability field over olivine. Thus, future development of a holistic model of partial 

melting of the mantle in subduction zones requires in-depth understanding of how phase 

equilibria are affected by such factors . While the effect of pressure, temperature and bulk 

composition (including H2O content) have been investigated in previous studies, the effect of 

oxygen fugacity on differentiation in arcs is still debated.  It has long been known that arc lavas 

are more oxidized than MORBs (Carmichael, 1991), but the origin of the oxidized signature 

remains debated. Analyses of Fe3+/total Fe in primitive melt inclusions from subduction zones 

also indicate that arc lavas are more oxidized than mid-ocean ridge basalts and back-arcs, 

suggesting an origin from a mantle wedge that has been oxidized by slab-derived materials 

(Brounce et al., 2014, 2015; Grocke et al., 2016; Kelley and Cottrell, 2009; Tollan and Hermann, 

2019). However, other studies using redox-sensitive trace elements (Lee et al., 2005; Lee et al., 

2010) and isotopic constraints (Dauphas et al., 2009) challenge this hypothesis , and suggest 

instead that arc lavas acquired their oxidized state via fractional crystallization (Chin et al., 2018; 

DeBari and Greene, 2011; Jagoutz, 2010; Lee et al., 2006; Tang et al., 2018, 2019), mixing and 

crustal assimilation (Grove et al., 1982; Patiño Douce,1999), or upper crustal differentiation and 

open system processes (Blatter et al., 2013; Humphreys et al., 2015).  



Confidential manuscript, accepted for publication In: Konter J., Ballmer M, Cottaar S, & Marquardt H. (Eds. ), 

Mantle Convection and Surface Expressions, AGU books 

 

 

Figure 9. (a) Experimentally produced peridotite partial melts without H2O, with H2O but no co-existing aqueous 

vapor, and co-existing with aqueous vapor plotted in SiO2 versus total alkali space . Partial melts of peridotite 
metasomatized by hydrous crustal partial melts are also plotted . (b) H2O versus SiO2 concentrations of 
experimentally derived partial melts in equilibrium with olivine and orthopyroxene. This subplot is a modification of 
Figure 7 in Mallik et al. (2016).  All compositions plotted in the subplots have been normalized to a volatile-free basis. 

(c) P-T space showing the solidi of nominally anhydrous peridotite, peridotite with 50 and 200 ppm H2O, wet but 
vapor absent peridotite solidi, nominally anhydrous oceanic crust or basalt, vapor present basalt, wet but vapor 
absent basalt, nominally anhydrous sediments and wet sediments. The ridge and plume adiabats as well as the hot, 
intermediate and cold subduction geotherms are the same as in Figure 5. Primary arc magma compositions with 7 

and 13 wt.% H2O, corrected to be in equilibrium with olivine of Mg# 91 are also plotted. (d) SiO2 versus total alkali 
(Na2O + K2O) space with partial melts of sediments and altered oceanic crust produced in experiments, primary arc 
magmas (same as plotted in panel a), and naturally occurring peridotites, mid-ocean ridge basalts and subducting 
sediments (are plotted. The classifications of rock types in the figure are based on Le Bas et al., (1986). For details 
about primary arc magma calculation and he references for the sources of data, see Supplementary Text S1. 
 

4.3.3 Melting of non-peridotitic sources in arc magma generation. 

Downgoing plate contributions to fluid flux & sediment melt diapirs. Based on the similarity of 

geochemical signatures between subducting sediment and volcanic arc lavas (Plank, 2005), and 

reproduction of the geochemistry of arc basalts by dehydration of subducted slab (sediments and 

hydrothermally altered oceanic crust) along with subsequent metasomatism of the sub-arc mantle 

(Tatsumi and Kogiso, 2003), the involvement of the subducted slab in arc magma production is 

well-established. Aqueous fluids released from the dehydration of subducted sediments and 



Confidential manuscript, accepted for publication In: Konter J., Ballmer M, Cottaar S, & Marquardt H. (Eds. ), 

Mantle Convection and Surface Expressions, AGU books 

 

altered oceanic crust lower the solidus temperatures of sub-arc mantle peridotite due to 

cryoscopic depression of melting temperatures by H2O flux. Also, these aqueous fluids 

metasomatize or alter the mineralogy of the sub-arc mantle to produce hydrous minerals such as 

mica (phlogopite), amphibole and chlorite. The solidus of such metasomatized peridotites are 

also lower than that of nominally anhydrous peridotite (Fig. 9c). The latest global thermal 

models of subduction (Syracuse et al., 2010) show that the solidi of fluid-fluxed peridotite and 

metasomatized peridotite lie in the thermal regime of the mantle wedge, hence, the sub-arc 

mantle undergoes fluid-fluxed partial melting. However, it is interesting that fluxing fluids from 

the dehydration of the slab also lower the solidus of the sediments and altered oceanic crust (Fig. 

9c). The latest global thermal models of subduction show that for intermediate subduction zones 

(such as Guatemala/El Salvador) and hot subduction zones (such as Central Cascadia), the 

aqueous fluid-fluxed solidi of sediments and altered oceanic crust intersect the pressure-

temperature paths of the slabs (Fig. 9c). This implies that sediments and altered oceanic crust 

partially melt in intermediate to hot subduction zones, and the partial melts are expected to 

participate in primary arc magma formation. Based on geochemical proxies such as elevated 

Th/Yb and low Lu/Hf, contribution of slab partial melts to the source of arc magma have been 

inferred for Central Mexican Volcanic Belt (Cai et al., 2014), Sunda and Lesser Antilles 

(Woodhead et al., 2001), and the Marianas (Tamura et al., 2014) . 

 The following two observations can be made about partial melt of subducted crust and 

the dynamics of subduction zones. Firstly, the partial melts of subducted sediments and altered 

oceanic crust are much more siliceous (SiO2 > 60 wt.%) than primary arc basalts (Fig. 9d), 

hence, by themselves cannot explain the chemistry of primary magmas produced in subduction 

zones. Also, the partial melts are more siliceous than partial melts derived from peridotites (Fig. 

9d). Secondly, according to the thermal models of subduction zones, the isotherms are very 

closely spaced along the slab top, thus, the slab-top can be as much as 400 °C colder than the 

overlying sub-arc mantle within a narrow distance of less than around 25 km (Syracuse et al., 

2010). These observations imply that slab-derived partial melts are colder (i.e. in thermal 

disequilibrium) and also chemically distinct (i.e. in chemical disequilibrium) from the adjacent 

sub-arc mantle. Therefore, as described before, slab partial melts undergo reactive crystallization 

as they react with the overlying sub-arc mantle (Johnston and Wyllie, 1989; Mallik et al., 2015, 

2016; Prouteau et al., 2001; Rapp et al., 1999; Sekine and Wyllie, 1982).  Previous studies have 

shown that such melt-rock reaction produces geochemical signatures of certain primitive arc 

magma types such as high Mg-andesites and dacites (Prouteau et al., 2001; Tatsumi, 2001; 

Kepezhinskas et al., 1996), adakites (Rapp et al., 1999) and potassic to ultra-potassic arc magmas 

(Mallik et al., 2015, 2016). 

 Geodynamics of subduction zones are further complicated by the potential for buoyant 

diapirs rising from the subducted slab. As shown by previous studies from geodynamic 

simulations and geochemistry (Behn et al., 2011; Castro and Gerya, 2008; Marschall and 

Schumacher, 2012; Nielsen and Marschall, 2017), a mélange comprised of physical mixtures of 

sediment, altered oceanic crust and metasomatized slab lithosphere can advectively ascend into 

the overlying hotter mantle wedge from the subducted slab, where it can partially melt and 

contribute to primary arc magma formation (Fig. 9c). Partial melting of physical mixtures of 

mélange-like compositions and metasomatized lithosphere have been shown to produce alkaline 

arc magmas (Cruz-Uribe et al., 2018) and ultrapotassic to potassic magmas in arcs and cratons 

(Förster et al., 2017, 2018; Wang et al., 2017). Finally, the hybridisation of the mantle wedge by 
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melts derived from mélange can also produce a range of primary arc magmas, from tholeiitic to 

calc-alkaline composition (Codillo et al., 2018). 

 

Upper plate processes  

In addition to contributions from the downgoing slab, arc magmas may also be influenced by 

processes in the upper (overriding) plate lithosphere. Since the seminal work of Hildreth and 

Moorbath (1988) in the Chilean Andes, the concept of a “MASH” (mixing, assimilation, storage, 

homogenization) zone in the overriding plate has become widely accepted and refined by 

experimental petrology and geodynamic modeling. The most recent iteration of the MASH 

hypothesis, Annen et al.’s (2006) Deep Crustal Hot Zone model involves both fractional 

crystallization of primary arc magmas in the uppermost mantle and deep crust, as well as partial 

melting of pre-existing crustal rocks in the upper plate. Although by no means an exhaustive list, 

detailed field studies of arc plutonic rocks from Kohistan (Jagoutz, 2010), Famatinian arc, 

Argentina (Otamendi et al., 2012; Walker Jr et al., 2015), as well as studies of deep crustal 

cumulate xenoliths from the Sierra Nevada, California (Ducea, 2002; Lee et al., 2006), Arizona 

(Erdman et al., 2016) support a primary role for crystallization-differentiation as the mechanism 

of growing new arc crust, and support the petrological requirement that mafic to ultramafic 

cumulates be the necessary complements to silicic, calc-alkaline batholiths that are the hallmark 

of convergent margins. Crystal fractionation of so-called “primary” arc magmas may occur even 

deeper than the lower crust, as evidenced by residual arc mantle lithosphere that experienced 

refertilization by basaltic arc melts, resulting in the precipitation of clinopyroxene and garnet 

(“arclogites”) as the melts evolved at depth (Chin et al., 2014; Chin et al., 2016). However, 

similar pyroxenite enrichment can also occur via melt-rock reaction in the convecting mantle 

wedge (Berly et al., 2006; Green et al., 2004; Kelemen et al., 1998), and recent studies of global 

arc volcano trace element systematics suggest that the mantle wedge itself may be periodically 

metasomatized by enriched continental lithosphere that is eroded during arc magmatism (Turner 

and Langmuir, 2015). It is thus difficult to separate the contributions from a “contaminated” 

wedge vs. lithospheric components by using arc volcanic rocks and shallow plutons alone, since 

both experienced protracted evolution throughout the arc crust, and therefore likely record a 

combination of both processes (Farmer et al., 2013).  Nevertheless, mass balance constraints for 

the bulk continental crust require at least a 2:1 (but likely to be 10:1 or more) ratio of mafic-

ultramafic cumulates and restites as counterparts to the silica-rich arc/continental crust; provided 

those cumulates are not always convectively removed due to negative buoyancy, they make up 

the greatest contribution to the overriding arc crust. This, combined with the long-lived (but 

episodic) nature of continental arcs (Cao et al., 2017; Ducea et al., 2015), indicates that 

magmatic differentiation and the fractionation of massive amounts of mafic cumulates must be a 

primary driver of the compositional evolution of arc magmas. Thus, in addition to assimilation 

and partial melting of pre-existing (and usually older) crustal rocks of the upper plate 

lithosphere, partial melting of upper plate cumulates may also contribute to the wide variation in 

arc magma compositions. Foundering, eclogitized lower crust may heat up and partially melt as 

it descends into the mantle (Gao et al., 2004; Lustrino, 2005), providing yet another way to 

generate buoyant, silica-rich melts that rise up and become incorporated into the continental 

crust.  As discussed in an earlier section, the solidus of pyroxenitic assemblages is lower than 

that of peridotitic ones, and so pyroxenites are more easily melted. Experimental partial melts of 

clinopyroxene-rich cumulates similar to those found in arcs (Médard et al., 2005) show that their 
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partial melts are Ca-rich and Si-undersaturated and similar to some primitive arc melt inclusions 

(Schiano et al., 2000). 

 

4.3.4 Natural arc magmas & their cumulates 

Erupted primary lavas in volcanic arcs are rare, as they are usually modified by 

secondary processes as the melt migrates from the mantle source to eruption at the surface.  

Direct samples of putative primary arc melts occur as melt inclusions hosted in high Mg# olivine 

phenocrysts.  Such high Mg# (89 – 92) olivines are in equilibrium with mantle peridotite, and 

thus it is assumed that any liquid trapped in such olivines are also mantle-derived and therefore 

primary. However, olivine-hosted melt inclusions are not sampled in every arc, are not as 

abundant as erupted primitive lavas, and also may experience diffusive re-equilibration, 

potentially compromising any primary chemical signatures (Gaetani et al., 2012). In the right 

hand panels of Figure 6, we plot nearly 40,000 compositions of arc volcanic rocks downloaded 

from the GEOROC online database, nearly 400 cumulates of arc magmas previously compiled 

by Chin et al. (2018), and 205 primary arc melt inclusion compositions (see Supplementary 

Table S5 for references). One of the clearest features of the data to emerge from a simple visual 

inspection of the major element plots is that, unlike the tightly coherent trends described by 

MORBs and their cumulates, arc volcanic rocks show considerable scatter and a much wider 

range in nearly every major element. By contrast, melt inclusions plot in a restricted Mg# 

window but interestingly span a wide range of compositions in certain elements, notably CaO, 

K2O, and Na2O (Figs. 6, S1). Such large variations at high Mg# suggests primary melts sample 

heterogeneous sources in the mantle wedge and overriding plate (Sadofsky et al. 2008). Recent 

studies on arc lavas using trace element systematics also point to an important role of mantle 

wedge heterogeneity in generating the diversity of arc magma compositions (Turner and 

Langmuir, 2015; Turner et al., 2016). The utility of major elements in fingerprinting subduction 

fluxes is limited compared to the sensitivities of trace element compositions, trace element ratios, 

and isotopic data, but a comprehensive survey of all the available data is beyond the scope of this 

contribution. 

As seen in the right hand panels of Figure 6, arc cumulates also generally span a larger 

compositional variation than MORB and OIB cumulates. This observation implies that arc 

magmas and their cumulates reflect more complex petrogenesis compared to MORBs and OIBs, 

as discussed earlier. For example, despite the highest concentration of arc lavas falling within a 

similar range of SiO2 content as MORB and OIB (darkest red contours in Fig. 6i), the contoured 

arc lava data skew towards higher SiO2, in contrast to MORB and OIB, the former having a more 

or less symmetrical distribution in SiO2 and the latter skewing towards lower SiO2. One 

explanation for the overall higher SiO2 in arc lavas is that they experience a greater degree of 

fractional crystallization and/or assimilation of crustal rocks, starting at fairly primitive 

compositions and therefore deep and early in their evolution (Lackey et al., 2005; Nelson et al., 

2013). 

 When arc volcanic rocks and arc cumulates are viewed together, several complementary 

trends consistent with an important role for fractional crystallization emerge. In the contoured 

data of CaO vs. Mg#, most arc volcanic rocks have CaO <10 wt.%, but MORBs have CaO >10 

wt.% (Supplementary Fig S1a,g). This can be explained by the early precipitation of anorthite 

and/or clinopyroxene as a major cumulate mineral in arcs, whereas in mid-ocean ridges 

plagioclase saturates early and tends to be albitic (Beard, 1986; Chin et al., 2018; Grove et al., 

1993). This is also borne out in the systematics of Al2O3 and Na2O (Fig. 6j,k). MORB cumulates 
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define a tight trend in Al2O3 vs. Mg# space and show a peak in Al2O3 at high Mg# (Fig. 6b), 

whereas arc cumulates define a looser trend with a weaker peak at high Mg# (Fig. 6j).  Indeed, 

the median Al2O3 of the most primitive MORB cumulates (Mg# 80 – 90) is substantially higher 

than arc cumulates in the same Mg# range (Chin et al. 2018 and Figure 3 therein). These 

cumulate systematics subsequently control the Al2O3 content of differentiating arc magmas. In 

MORBs, Al2O3 defines a tight, decreasing trend as Mg# decreases, reflecting the simple 

mineralogy of MORB cumulates (gabbroic). By contrast, Al2O3 in arc volcanic rocks span a 

wide range of Al2O3 (10 – 20 wt.%) with decreasing Mg#, indicating multiple mineral 

contributions (pyroxene, amphibole, etc.) to the fractionating cumulate assemblage in contrast to 

the simple gabbroic mineralogy of MORB cumulates, including an important role for garnet 

(Tang et al. 2018), especially in continental arcs. Most arc lavas have Al2O3 between 16 – 18 

wt.% (e.g., the classic “high alumina arc basalts”, (Crawford et al., 1987)) compared to MORBs, 

which peak below 16 wt.% Al2O3, and, importantly, skew towards lower Al2O3 compared to arc 

lavas (Fig. 6j). The plot of Na2O vs. Mg# also reflects the plagioclase-dominated gabbroic 

cumulates of MORB compared to arcs and complementary trends in the lavas. Lastly, as 

discussed in the MORB section, the classic tholeiitic vs. calc-alkaline trends clearly emerge in 

comparing MORBs vs. arcs. The diagnostic feature of calc-alkaline lavas is Fe-depletion with 

increasing differentiation (Ssupplementary Fig. S1i), attributed to crystal fractionation of Fe- 

and Ti-bearing phases such as garnet and magnetite (Fig. 6l). 

 

5. Future directions 

The summary of experimental data presented in Section 2 and in previous review articles 

(Kogiso et al., 2004; Lambart et al., 2013) emphasize the large range of compositions covered by 

the potential lithologies present in the mantle source of magmas. This makes it challenging to 

determine a unique proxy as a tracer of heterogeneities in the mantle source of magmas. In 

addition, calculations presented in Section 4.2 highlight that different proxies can result in 

different estimates of the nature and proportion of the heterogeneity in the mantle. Similarly, 

compositional observations of natural MORB and their cumulates point out a decoupling 

between the major element compositions that support fractional crystallisation as the main 

process of magma differentiation, and trace element compositions that indicate the strong 

influence of porous flow and melt-rock interactions. Hence, it is crucial for the geochemical 

community to concentrate their future efforts into the construction of a comprehensive dataset, 

with studies combining major-element, trace element and isotopic analyses. In order to correctly 

interpret the geochemical dataset, we need parameterizations and geochemical models that take 

into account such a large range of compositions. Hence, we need better constraints on the role of 

the lithological composition on partial melting behavior and element partitioning, especially in 

the presence of volatiles. As far as volatiles are concerned, the focus has largely been on H2O 

and/or CO2, but a growing consensus has emerged that other species, notably S and N are 

important contributors to the solid Earth volatile recycling budget (Evans, 2012; Cartigny and 

Marty, 2013; Mallik et al., 2018), and so also influence the partial melting behavior and 

consequent differentiation of the upper mantle. Future studies should not only investigate the 

effect of S and N, but should also constrain the effect of the presence of mixed volatile species of 

H-C-N-S on partial melting of the upper mantle.  

 As mentioned earlier in this chapter, the thermal state of the mantle, expressed in terms of 

potential temperature (TP) is an extremely important aspect in the chemical differentiation of the 
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Earth. TP is currently estimated based on the magnesian content of erupted primary lavas, 

assuming that a hotter mantle produces magmas with higher magnesia contents (e.g. Herzberg et 

al., 2007; Herzberg and Gazel, 2009). It has been shown that melt-rock reactions involving 

heterogeneities in the upper mantle and the presence of volatiles produce magnesia-rich magmas 

at colder mantles than that predicted earlier (Mallik and Dasgupta, 2014). This begs for further 

studies that would calibrate a mantle thermometer to estimate TPs taking into account factors 

such as melt-rock reactions and influence of volatiles, else we may overpredict the thermal state 

of the Earth’s mantle beneath tectonic settings. 

As far as subduction zones are concerned, there is broad agreement on the behavior of 

aqueous fluids and partial melts from the subducting slab and their effects on generation of arc 

magmas, and transfer of elements from the subducted crust to the mantle. However, one of the 

least understood phases in subduction zones are supercritical fluids, which are the products of 

complete miscibility between aqueous fluids and partial melts. The reason why supercritical 

fluids remain so poorly understand is due primarily to experimental difficulty in studying them. 

Most experimental techniques employ ex-situ analyses of samples, where the sample, after being 

“cooked” at the P-T of interest, are quenched to room P-T and investigated, assuming that 

modifications during the quenching process are not significant. Kessel et al. (2004) went a step 

further and cryogenically preserved the fluid in their quenched capsules during laser ablation 

mass spectroscopy, in order to preserve the fluid phase in their capsules. However, supercritical 

fluids may separate into two phases during the quenching, rendering ex-situ analyses of this 

phase nearly impossible. A few studies have experimentally demonstrated the closing of the 

miscibility gap between aqueous fluids and silicate melts under P-T conditions applicable to 

subduction zones (Bureau and Keppler, 1999; Kawamoto et al., 2012; Mibe et al., 2007, 2011; 

Ni et al., 2017; Shen and Keppler, 1997) using a Bassett-type hydrothermal diamond anvil cell or 

X-ray radiography using a multianvil apparatus. However, the current state-of-the-art in such in-

situ experimental techniques have limitations in terms of chemical analyses that can be 

performed to constrain how these fluids may affect element transport in subduction zones. A 

future challenge for experimental geoscientists would be to improve the techniques of in-situ 

analysis such that supercritical fluids can be investigated better. 

Finally, melt-rock interactions, in the mantle and in the crust, are increasingly recognized 

as important petrogenetic processes, both in the mantle and in the crust, across all geological 

settings. In our view, one of the major challenges faced by the experimental community is to 

develop tools and provide experimental constraints to predict the system behavior during these 

interactions including complex feedback between composition and melting and crystallization 

behavior and kinetics of interactions during melt transport. Some of the questions we need to 

address are: (1) the required conditions for the preservation of the source signal in primary 

magmas, (2) the effect of chromatographic melting on the range of isotopic compositions and 

major and trace elements concentrations in MORB and OIB (Navon and Stolper, 1987) , (3) the 

mechanisms of transition between the various types of magma flow in the upper mantle (porous 

versus focused flow; e.g., Kelemen et al., 1997), and (4) the implications of crustal melt-rock 

interaction on the composition of the cumulate minerals and lavas (e.g., Lissenberg et al., 2013). 
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