Sarah Lambart - 2016

LECTURE 3: INTRODUCTION TO THERMODYNAMICS

Fig. 5.1 Winter

Magma formation and evolution law => PHASE DIAGRAMS

- Stability of a silicate melt
- Minerals in equilibrium with that melt
- Phase proportions
- Effect due to change of P or T

Recap Lecture 2 3 ingredients to create a igneous rock

Melting

Crystallization

Mixing/ assimilation

Magmatic differentiation: crystallization

Magmatic differentiation: assimilation

Magmatic differentiation: magma mixing

Credit: B. J. Andrews

Magmatic differentiation: magma mixing

Oscillatory zoning - *https://wwwf.imperial.ac.uk/*

*+

Magmatic differentiation: magma mixing

oxide-oxide variation diagrams:

- mixtures lie along a straight line
- proportional distances are the same on all diagrams

Fig. 1.9 Winter

Pressure gradient $\Rightarrow P = \rho gz$

Pressure gradient $\Rightarrow P = \rho gz$

- Pressure gradient in the crust: 30 MPa/km
- Pressure gradient in the upper mantle: 35 MPa/km

Geothermal gradient = change of P + change of temperature with depth

Change of T: Heat transfer

- Heat sources:
 - Secular cooling
 - Radioactive decay

Change of T: Heat transfer

- Heat sources:
 - Secular cooling
 - Radioactive decay
 - Heat transfer:
 - Conduction
 - Convection

Conduction of Heat

Fig. 1.9 Winter

Fig. 1.9 Winter

http://www.tulane.edu/

http://ei.lehigh.edu/

THERMODYNAMICS: "science that tells us which mineral(s) will be stable under different conditions"

Definitions: System

some portion of the universe that you wish to study

- Surroundings = the adjacent part of the universe outside the system
- Isolated system
- Closed system
- Open system

Definitions: System

some portion of the universe that you wish to study

- Surroundings = the adjacent part of the universe outside the system
- Isolated system = no exchange of mass or heat with the surroundings
- Closed system = no exchange of mass
- Open system = exchange of heat and mass with surroundings

Definitions: State variables

- Extensive variables: depends on the size of the system
 - Mass
 - Moles
 - Volume
 - G (free energy)
 - S (entropy)
 - H (enthalpy)

Definitions: State variables

 Intensive variables: independent of the size of the system

Definitions: State variables

- Intensive variables: independent of the size of the system
 - T (≠ Heat)
 - P
 - X (composition)
 - G (specific free energy G/mole)
 - S (specific entropy S/mole)
 - **H** (specific enthalpy H/mole)

Definitions: phase (p)

 any part of the system that is physically (and most often chemically) distinct and mechanically separable

 \neq state of matter (Ex. SiO₂ system)

Definitions: Component (c) = the minimum number of independent chemical compounds necessary to describe the compositions of all the phases in the system

≠ phase !

⇒ Unary (one component), binary (two components) and ternary (three components) systems.

Definitions: Equilibrium

= the minimum energy state of a system under imposed conditions

 Le Chatelier's Principle → if a chemical system at equilibrium experiences a change in concentration, temperature, volume or partial pressure, then the equilibrium shifts to counteract the imposed change

Definitions: Equilibrium

Metastability

One and two component systems

TO READ: Chapter 6 Chapters 1 & 2 Ehlers (smartsite)

FIGURE PRESENTATION