

Sarah Lambart - 2016

## LECTURE 16: INTRODUCTION TO RADIOACTIVE ISOTOPES

- Less than 1% in the bulk composition
- Much more sensitive to the igneous processes
- Potential tracers of the source composition

## **Batch Melting**

C<sub>0</sub>: Bulk composition C<sub>L</sub>: liquid composition *F*: melt fraction Bulk D =  $\sum D_i X_i$ 

 $C_L/C_0 = 1/(F + D(1-F))$ 



## **REE** diagrams

- All incompatible (D<1)
- Continuous variation of the degree of incompatibility: D<sub>LREE</sub> < D<sub>MREE</sub> < D<sub>HREE</sub> <1</li>



⇒negative slope
⇒higher slope for lower F

## **REE** diagrams

- All incompatible (D<1)</li>
- Continuous variation of the degree of incompatibility:  $D_{IRFF} < D_{MRFF} < D_{HRFF} < 1$

## Application to igneous processes:

- Depth of melting (in the mantle):
  - D<sub>Eu</sub><sup>plg</sup> >1 ⇒ negative anomaly in Eu
     D<sub>Yb</sub><sup>gt</sup> >>1 ⇒ stronger negative slope

## **REE** diagrams

- All incompatible (D<1)
- Continuous variation of the degree of incompatibility: D<sub>LREE</sub> < D<sub>MREE</sub> < D<sub>HREE</sub> <1</li>

## Application to igneous processes:

- Depth of melting (in the mantle):
- Source composition:
  - $D=1 \Rightarrow C_L (magma) = C_0 (source)$
  - $D=0 \Rightarrow C_0 = F^*C_L$
  - $D_a = D_b \Rightarrow C_L^a / C_L^b = C_0^a / C_0^b$

# Isotopes: definition



Same # of protons (atomic number)

Different # of neutrons (protons + neutrons = elemental mass)



## Radioactive and Radiogenic Isotopes



Radioactive isotope Radiogenic isotope

## Radioactive and Radiogenic Isotopes

#### Decay chain



Radioactive isotope

Radiogenic & Radioactive isotope Radiogenic isotope

## Isotopic systems

- Used for dating
  - K-Ar
  - Rb-Sr
  - Sm-Nd
  - U-Pb



- Sm-Nd
- Rb-Sr
- Pb-Pb
- Lu-Hf
- Re-Os



## Example: the Rb-Sr system



<sup>87</sup>Rb decays to <sup>87</sup>Sr (t<sub>1/2</sub> = 48.8 x 10<sup>9</sup> yr);
 both are referenced to <sup>86</sup>Sr, which is a stable isotope

 <sup>87</sup>Sr/<sup>86</sup>Sr ratio in present-day sample = initial ratio [(<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>0</sub>], plus any radiogenic <sup>87</sup>Sr that has formed since then

$$^{87}Sr = ^{87}Sr_o + ^{87}Rb\lambda t$$

 $\lambda = 1/t_{1/2}$ : decay constant

## Example: the Rb-Sr system

•  $D_{Rb} < 0 \implies {}^{87}Sr/{}^{86}Sr_{cc} > {}^{87}Sr/{}^{86}Sr_{mantle}$ 



## Example: the Rb-Sr system

•  $D_{Rb} < 0 \implies {}^{87}Sr/{}^{86}Sr_{cc} > {}^{87}Sr/{}^{86}Sr_{mantle}$  $\Rightarrow {}^{87}Sr/{}^{86}Sr_{oc} > {}^{87}Sr/{}^{86}Sr_{mantle}$ 





## Today Mantle reservoirs



Isotopes do not fractionate during partial melting and crystallization processes!!!

Present day melting event:  $[^{87}Sr/^{86}Sr]_0 = [^{87}Sr]/[^{86}Sr]_L$ 

[<sup>87</sup>Sr/<sup>86</sup>Sr]: constant during melting/crystallization

## **Today Mantle reservoirs**



Isotopes do not fractionate during partial melting and crystallization processes!!!

Present day melting event:  $[^{143}Nd/^{144}Nd]_0 = [^{143}Nd/^{144}Nd]_L$ 

[<sup>143</sup>Nd/<sup>144</sup>Nd]: constant during melting/crystallization

## Today Mantle reservoirs



Isotopes do not fractionate during partial melting and crystallization processes!!!



OIB compilation: Hofmann, 2003

## Mantle reservoirs flavors

Isotopically enriched reservoirs (EM-1, EM-2, and HIMU): too enriched for mantle  $\Rightarrow$  crustal rocks and/or sediments



OIB compilation: Hofmann, 2003

HIMU – (enriched in <sup>206</sup>Pb<sup>/204</sup>Pb, <sup>207</sup>Pb<sup>/204</sup>Pb, <sup>208</sup>Pb<sup>/204</sup>Pb, depleted in <sup>87</sup>Sr<sup>/86</sup>Sr)
 Origin: a) recycled oceanic crust, which has lost alkalis (Rb) during alteration and subduction b) metasomatically enriched oceanic lithosphere

 EM-1 (slightly enriched in <sup>87</sup>Sr/<sup>86</sup>Sr, but not in Pb, very low <sup>143</sup>Nd/<sup>143</sup>Nd) Origin: a) recycling of delaminated subcontinental lithosphere b) recycling of subducted ancient pelagic sediment

 EM-2 (more enriched, especially in <sup>87</sup>Sr/<sup>86</sup>Sr and radiogenic Pb Origin: a) recycled ocean crust and small amount of subducted sediment b) recycling of melt-impregnated oceanic lithosphere

#### NEXT TIME Oceanic basalts

## TO READ:

Chapter 10

**FIGURE PRESENTATION**