REVIEW: CHAPTERS 1 TO 5

Sarah Lambart

CHAPTER 1: MINERAL PROPERTIES AND CLASSIFICATION

CHAP. 1: MINERAL PROPERTIES AND CLASSIFICATION

► Mineral:

naturally occurring (always) >a structure and a composition that give it defined macroscopic properties (always) inorganic (always) Solid (most of the time) Crystalline solid (most of the time) Homogeneous (most of the time)

CHAP. 1: MINERAL PROPERTIES AND CLASSIFICATION

Classification (based on the dominant anion):

- sulfates SO_A^{2-} oxides O^{2-}

- silicates SiO₄²⁻

- native (no anion)
- phosphates PO_A^{3-} hydroxides OH^{-} sulfides S^{2-}
- borates BO_3^{2-} carbonates CO_3^{2-} halides F⁻, Br⁻, Cl⁻ or l⁻

CHAP. 1: MINERAL PROPERTIES AND CLASSIFICATION
Silicate classification: (based on polymerization)

- sorosilicates: epidote

- cyclosilicates: tourmaline, cordierite

- chain silicates : amphiboles, pyroxenes

- sheet silicates: micas

- Framework silicates: quartz, feldspar (most common mnl in Earth's crust)

CHAP. 1: MINERAL PROPERTIES AND CLASSIFICATION

> Physical properties:

- Habit: euhedral, subhedral, anhedral
- Morphology: granular, tabular, prismatic
- Transparency: transparent, translucent, opaque
- Luster, Metallic, submetallic, adamantine, resinous, vitreous, earthy
- Color & Streak (color of powder on a porcelain plate)
- Tenacity: brittle, sectile, ductile
- Cleavage and fractures
- Density in g/cm³ or specific gravity (Wa/(Wa-Ww))
- Hardness: Moh's scale: talc<gypsum<calcite<fluorite<apatite<orthoclase< quartz< topaz< corundum< diamond
- Others: taste, acid test, electric conductivity, radioactivity, magnetism, fluorescence, pleochroism

Close-packing: Arrangement of atoms with the same size that minimizes void space.

> 2 different type of close packing:

- hcp: tetrahedral interstice (ABABA)
- ccp: octahedral interstice (ABCABC)

Even if not ideally close-packed, anions form regular coordination polyhedra about cations

Definitions: The coordination number or CN is the number of closest neighbors of opposite charge around an ion. It can range from 2 to 12 in ionic structures. These structures are called coordination polyhedra.

Pauling's rule:

> #1: the coordination polyhedron is defined by the ratio R_{cation}/R_{anion}

Rx/Rz	C.N.	Туре	
1.0	12	Hexagonal or Cubic Closest Packing	
1.0 - 0.732	8	Cubic	
0.732 - 0.414	6	Octahedral	
0.414 - 0.225	4	Tetrahedral (ex.: SiO ₄ 4-)	
0.225 - 0.155	3	Triangular	
<0.155	2	Linear	

Pauling's rule:

- > #2: The Electrostatic Valency (e.v.) Principle: ev = Z/CN
- ⇒ extremely useful in evaluating the nature of the crystal structure:
- Stable structure ⇔ sum of electrostatic valences from cations exactly balance the charge of the anion.

Pauling's rule:

#3: Shared edges and faces of coordination polyhedra decrease the stability of the crystal (because they reduced the distance cation-cation or anion-anion)

#4: In crystal with different cations, those of high valency and small CN tend not to share polyhedral elements

Pauling's rule:

- #5: <u>The principle of parsimony:</u> the number of different kinds of constituents in a crystal tends to be small because there are only few types of different cations and anions sites.
- ⇒structures with complex chemical composition: different ions can occupy the same site ⇔ solid solutions
- Ex: olivine: Mg²⁺ and Fe²⁺ can both occupy the octahedral sites while Si⁴⁺ occupies the tetrahedral sites

Definitions

- Lattice point (or node): random <u>point</u> in a crystal structure (usually chosen as the point of highest symmetry) that can be exactly reproduced by translation (and translation only)
 - "Motif": The collection of atoms that can be reproduced by translation only.
 - Crystal lattice: constructed by connecting the lattice points

Primitive cell:

> 2D: 4 connected lattice points forming a parallelogram
 > 3D: 8 connected lattice points forming a parallelepiped
 Contain one unique lattice point (or one motif)

Multiple cell: 2D

Centered: One lattice point at each corner + one lattice point in the center. Contain 2 lattices points (or 2 motifs)

Mulliple cell: 3D

- F: face-centered: One lattice point at each corner + one lattice point in the middle of each faces. Contain 4 lattices points (or 4 motifs)
- I: Body-centered: One lattice point at each corner + one lattice point in the middle of the cell. Contain 2 lattices points
- C: Side centered: One lattice point at each corner + one lattice point in the middle of the bottom and the top faces. Contain 2 lattices points

(each corner is shared with 8 other cells and each face is shared with 2 cells)

Unit cell: the <u>smallest</u> divisible unit of a mineral that <u>possesses the</u> <u>symmetry</u> and properties of the mineral.

Rules to choose a unit cell

- Smallest repeatable unit
- Highest possible symmetry (with the most 90° angles)

>7 Crystal systems & 14 Bravais lattice

Elements of symmetry

- **Rotations:** 1 fold, 2 fold, 3 fold, 4 fold, 6 fold
- **Mirror**
- Center of symmetry
- **Rotoinversions:**1 fold, 2 fold, 3 fold, 4 fold, 6 fold

- Hermann-Mauguin symbols
- Rules:
 - Write a number representing each of the unique rotation axes present:
 2 2 2 2

Next we write an "m" for each unique mirror plane. 2m 2m 2m

If any of the axes are perpendicular to a mirror plane we put / between the rotation axis and the mirror plane. 2/m2/m2/m

Rhombic-dipyramidal class 🗖

- > 32 crystal classes or point groups
- > Organized in 6 (+1) crystal systems:
- Sometric: four A_3 or four $\overline{A_3}$
- > Hexagonal: one A_6 or one A_6
- > Trigonal: one A_3 or one $\overline{A_3}$
- > Tetragonal: one A_4 or one A_4
- > Orthorhombic: three A_2 or one A_2 +two m
- ► Monoclinic: one A₂ or one m
- >Triclinic: nothing or i

Crystal System	Crystal Class	Symmetry	Name of Class
Triclinic	1	none	Pedial
	1	i	Pinacoidal
Monoclinic	2	1A2	Sphenoidal
	m	1m	Domatic
	2/m	i, 1A ₂ , 1m	Prismatic
Orthorhombic	222	3A ₂	Rhombic-disphenoidal
	mm2 (2mm)	1A ₂ , 2m	Rhombic-pyramidal
	2/m2/m2/m	i, 3A ₂ , 3m	Rhombic-dipyramidal
Tetragonal	4	144	Tetragonal- Pyramidal
	 4	Ā ₄	Tetragonal-disphenoidal
	4/m	i, 1A ₄ , 1m	Tetragonal-dipyramidal
	422	1A ₄ , 4A ₂	Tetragonal-trapezohedral
	4mm	1A ₄ , 4m	Ditetragonal-pyramidal
	$\bar{4}_{2m}$	1 A ₄ , 2A ₂ , 2m	Tetragonal-scalenohedral
	4/m2/m2/m	i, 1A ₄ , 4A ₂ , 5m	Ditetragonal-dipyramidal
Hexagonal	3	1A ₃	Trigonal-pyramidal
	3	1Ā3	Rhombohedral
	32	1A ₃ , 3A ₂	Trigonal-trapezohedral
	3m	1A ₃ , 3m	Ditrigonal-pyramidal
	32/m	$1\overline{A}_3, 3A_2, 3m$	Hexagonal-scalenohedral
	6	146	Hexagonal-pyramidal
	ē	1Ā ₆	Trigonal-dipyramidal
	6/m	i, 1A ₆ , 1m	Hexagonal-dipyramidal
	622	1A ₆ , 6A ₂	Hexagonal-trapezohedral
	6mm	1A ₆ , 6m	Dihexagonal-pyramidal
	ōm2	1.Ā ₆ , 3A ₂ , 3m	Ditrigonal-dipyramidal
	6/m2/m2/m	i, 1A ₆ , 6A ₂ , 7m	Dihexagonal-dipyramidal
Isometric	23	3A ₂ , 4A ₃	Tetaroidal
	2/m3	3A ₂ , 3m, 4 <u>A</u> 3	Diploidal
	432	3A ₄ , 4A ₃ , 6A ₂	Gyroidal
	4 _{3m}	3 🗛 4, 4A 3, 6m	Hextetrahedral
	4/m 32/m	34 4 A 64 9m	Hexoctahedral

- Miller indices = reciprocal of the parameters of each crystal face.
 - Between parentheses
 - No comma
 - No factions
 - Parallel faces indicated with opposite signs (negative or "bar")

- Miller indices = reciprocal of the parameters of each crystal face.
 - Between parentheses
 - No comma
 - No factions
 - Parallel faces indicated with opposite signs (negative or "bar")

>48 crystal forms

- ► 15 crystal forms in the isometric system ⇔ closed forms
- ► 33 nonisometric forms ⇔ open forms
 - Pedion
 - Dihedron
 - ► Pyramid
 - Trapezohedron
 - Rhombohedron

- Pinacoid
- Prism
- Dipyramid
- Scalenohedron
- ► Tetrahedron

Iwinning: Addition of element of symmetry via the intergrowth of 2 or more crystals

Symmetry operations:

▶ Reflection across a mirror plan (twin plan) \Rightarrow contact twin

- Rotation about a common axis (twin axis)
- Inversion about a common point (twin point)

Penetration twin

Most common twinning:

- Contact twin:
 - polysynthetic twinning plagioclase
 - Swallow tail gypsum

- Penetration twin:
 - Carlsbad twinning orthoclase
 Iron cross Pyrite

Cause of twinning:

Transformation phase: related to the existence of polymorphs

Growth: presence of planar defect

Crystal defects

Point defects:

- Interstitial atoms: require a lot of energy and significant deformation of the structure
- Vacancy: promote diffusion
- Frankel pair: interstitial + vacancy
- Substitutions: solid solutions

CHAP. 5: TWINNING, CRYSTAL DEFECTS, AND POLYMORPHISM VS. ISOMORPHISM Crystal defects

- Linear defects = dislocations
 - Edge dislocation addition of half of a plane
 - Screw dislocation: favors the crystal growth.

Planar defects

Stacking fault and twin boundary: perturbation in the packing order

Inclusions (3D defects)

Solid, fluid, or melt: used to reconstruct the history of the rock

Polymorphism = "many forms": a single chemical composition can exist with two or more different crystal structures.

Change of structure = polymorphic transformations:

- Reconstructive transformation: require energy slow rates
- Displacive transformation: instantaneous and reversible
- Order-disorder transformation: due to the change of temperature

CHAP. 5: TWINNING, CRYSTAL DEFECTS, AND POLYMORPHISM VS. ISOMORPHISM Common polymorphs

- C (carbon): diamond and graphite: reconstructive (explains the presence of metastable diamond at the surface of Earth)
- Al₂SiO₅ (alumino-silicate): and alusite kyanite sillimanite: reconstructive (indicate the metamorphism zone)
- CaCO₃ (calcium- carbonate): aragonite, calcite and vaterite: reconstructive
- SiO₂ (silica): Cristobalite, Tridymite, β -quartz (high), α -quartz (low), coesite and stishovite: reconstructive and displacive
- KAl₂SiO₈ (potassium feldspar): sanidine, orthoclase and microcline: orderdisorder (presence of metastable polymorphs depends on the cooling rate)

- Seudomorphism = "false form": internal structure and chemical composition is changed but its external form is preserved.
 - >4 mechanisms:
 - Substitution: chemical constituent replaced by others
 - > Encrustation: crust around a pre-exiting mineral
 - > Alteration: partial replacement of the crystal
 - Paramorphism: polymorph (same compo) that kept the external shape of the initial mineral

- Isomorphism = solid solutions: minerals with the same crystal structure in which specific sites can be occupied by two or more elements, ions, or radicals.
- Rules for substitutions:
 - Extent of substitution enhanced at higher T
 - Electrical neutrality has to be maintained
 - If difference in charge (Z) between substituting ions > 1: difficult substitution
 - > The substitution should involve similar ion sizes (<15%)
 - If two ions are competing for the same site, the highest Z/r is favored.

Types of substitutions

- Simple substitution (ex: olivine $(Fe,Mg)_2SiO_4$)
- > Couple substitution (ex.: plagioclase $\underline{Na}AlSi_{3}O_{8} \underline{Ca}Al_{2}Si_{2}O_{8}$)
- Omission substitution (ex.: Pyrrhotite Fe_(x-1)S)
- ▷ Interstitial substitution (ex. Beryl Al₂Be₃Si₆O₁₈ \Rightarrow <u>K</u>Al₃Be₃Si₅O₁₈)