CHAPTER 8: SILICATES MINERALS

Sarah Lambart

quartz

muscovite

CONTENT CHAPT. 8 (6 LECTURES)

Part 1: Orthosilicates (= nesosilicates)
Part 2: Sorosilicates & Cyclosilicates
Part 3: Chain silicates (= inosilicates)
Part 4: Sheet silicates (= Phyllosilicates)
Part 5: Framework silicates (= tectosilicates)

CLASSIFICATION: STRUCTURAL

>Why?

- I) Silicates have various forms (needles, flakes, cube,...) due to the arrangement of the SiO₄⁴⁻ tetrahedra
- > 2) Tetrahedra link via cations:
 - nature of the cation depends on the arrangement of the tetrahedra
 - Nature of the cation: controls some of the physical properties (Ex.: color, density)

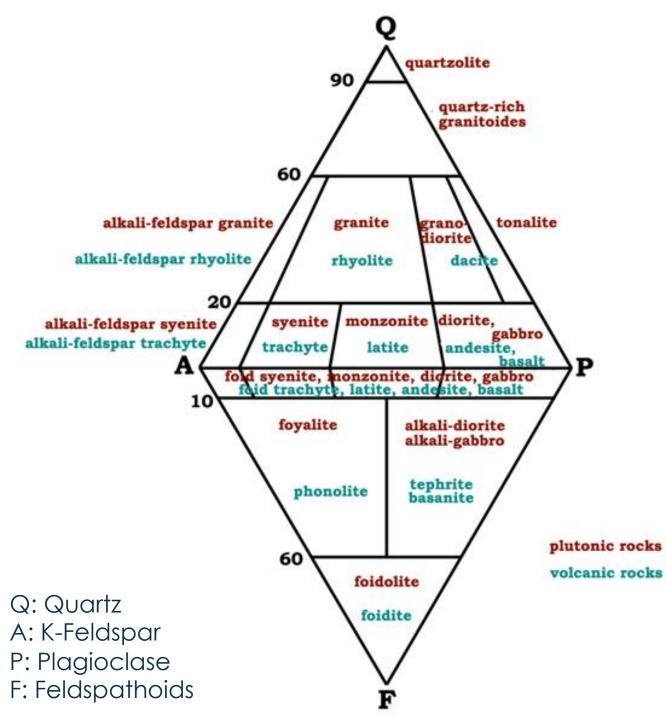
MAFIC VERSUS FELSIC

Mafic silicate: major cation: Mg and Fe (mafic: magnesia; "ferrum")

> Ex.: biotite, amphiboles, pyroxenes, olivine

Felsic silicates: lack of Fe or Mg as major constituents

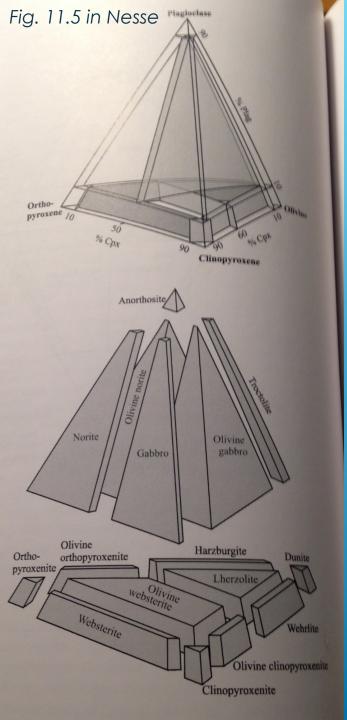
Ex.: feldspars (from which the name is derived), quartz, muscovite, feldspathoïds.

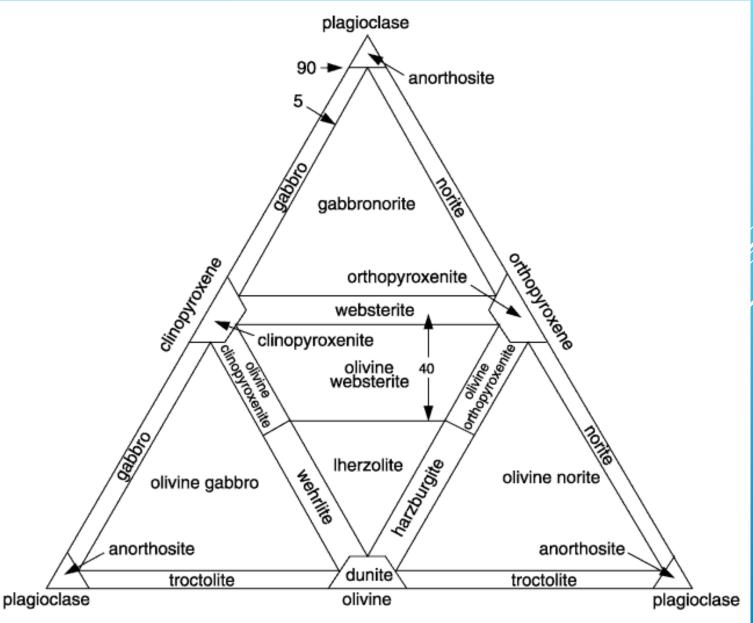

IGNEOUS ROCKS

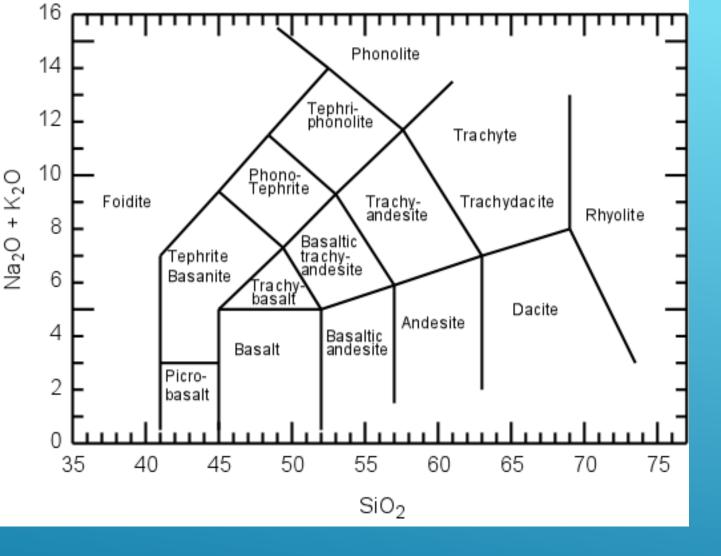
Mostly silicate (O and Si: most abundant element in Earth's crust)

 Silicate in igneous rocks: quartz, K-feldspar, plagioclase, muscovite, biotite, Ca-clinoamphibole (e.g.: hornblende), Caclinopyroxene (e.g., augite), orthopyroxene and olivine, feldspathoids (e.g., leucite, nepheline)

Classification: based on model mineralogy


>volume of rock occupied by each mineral: obtained by "point counting"

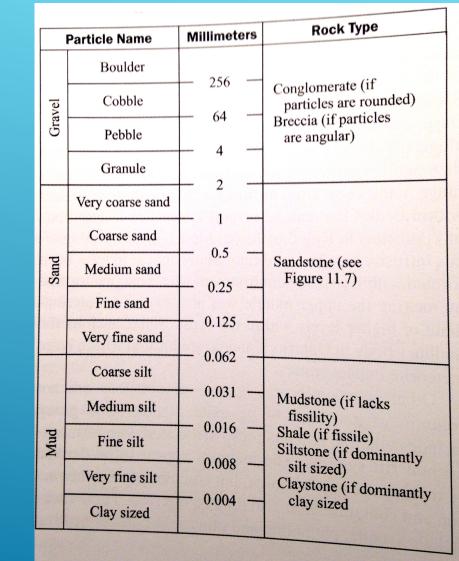

Streckheisen classification: based on model mineralogy volume of rock occupied by each mineral: obtained by "point counting"


Mostly for felsic plutonic rocks because

- grains in volcanic rocks are often too small
- Quartz and K-feldspar are not major constituents of mafic and ultramafic rocks

Mafic and ultramafic rock classifications: Streckeisen (modal mineralogy)

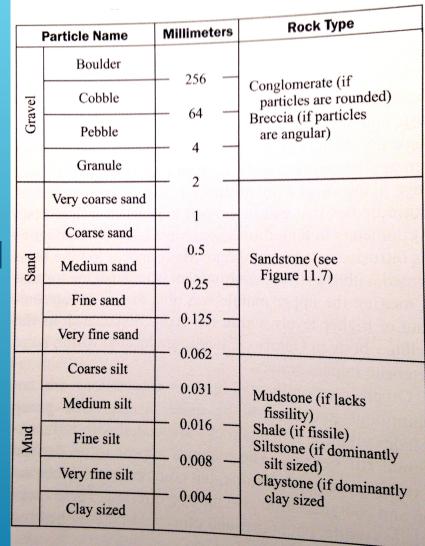
Volcanic rock classifications: based on chemistry


Examples:

- Based on relative amount of SiO_2 and alkalis (Na₂O + K₂O)
- Based on the normative mineralogy

IGNEOUS ROCKS

- **Environments:**
- > Oceanic: mostly mafic rocks
- mid-oceanic ridges
- Intraplate volcanic center or hot spot: Ex.: Hawaii
- Convergent plate boundaries:
- Most common volcanic rock: andesite
- Subduction setting
- Intracontinental:
- Continental flood basalt / trapp
- Layered intrusions: mafic bodies = old magma chambers/


Table 11.4 in Nesse

Always stratified (layered)
Mostly silicate minerals
Simple classification: based on grain size

Table 11.4 in Nesse

- Always stratified (layered)
- Mostly silicate minerals
- Simple classification: based on grain size
- Most common silicate: quartz, feldspar and clay
 - +"heavy minerals": zircon, tourmaline, garnet, staurolite, biotite, epidote, kyanite, sillimanite, titanite, zoisite, amphibole, pyroxene, andalusite, olivine

Mineralogical change once the deposit formed = diagenesis:

- > Alteration: transformation of feldspars into clays
- > **Dissolution:** into pore fluids
- Recrystallization: small to bigger grains
 - after dissolution
- Precipitation: precipitation of ions as new mineral (= recrystallization) or as addition to pre-existing mineral
- Change in clay mineralogy (with time and burial)

> Environments:

Terrestrial:

- Fluvial
- Lacustrine (lake)
- Eolian (wind)

> Transitional:

- Deltaic
- Tidal

> Marine:

- Sublittorial
- Abyssal plain

- Alluvial fan and fan delta

- Glacial

- Littoral (beach)
- Estuarian
- Bathuall marine fan

> Environments:

Terrestrial:

- Fluvial
- Lacustrine (lake)
- Eolian (wind)

> Transitional:

- Deltaic
- Tidal

> Marine:

- Sublittorial
- Abyssal plain

- Alluvial fan and fan delta

- Glacial

- Littoral (beach)
- Estuarial
- Bathuall marine fan

METAMORPHIC ROCKS

Mineralogy, texture and/or composition changed as the result of heat, pressure increase, reactive fluids and/or deformation

Classification: based on texture (foliated / non foliated) and/or mineralogy

4 groups: pelites, mafic rocks, Blueschist, Calc-silicate rocks

Rock Name			Texture		Grain Size	Comments	Parent Rock
Slate	l n c r e a s i n g	Metamorphism	F o I i a t e d		Very fine	Excellent rock cleavage, smooth dull surfaces	Shale, mudstone, or siltstone
Phyllite					Fine	Breaks along wavey surfaces, glossy sheen	Slate
Schist					Medium to Coarse	Micas dominate, scaly foliation	Phyllite
Gneiss					Medium to Coarse	Compositional banding due to segregation of minerals	Schist, granite, or volcanic rocks
Marble			N o n	222C	Medium to coarse	Interlocking calcite or dolomite grains	Limestone, dolostone
Quartzite			- 0 i		Medium to coarse	Fused quartz grains, massive, very hard	Quartz sandstone
Anthracite			a t d		Fine	Shiny black organic rock that may exhibit conchoidal fracture	Bituminous coal

Copyright © 2006 Pearson Prentice Hall, Inc.

METAMORPHIC ROCKS

> Pelites:

- derived from mud rocks
- -Al-rich: muscovite, biotite, garnet, staurolite, cordierite, aluminium silicates + quartz and feldspar.

> Mafic rocks:

- mostly derived from basalts and gabbros
- **4 facies:** greenschist \rightarrow Epidote amphibolite \rightarrow Amphibolite $\overrightarrow{}$ Granulite
- Blueschist and related rocks: HP/LT: subduction zones
- > Calc-silicate rocks: parent contains carbonates

METAMORPHIC ROCKS

Environment:

- Contact metamorphism: immediate vicinity of igneous intrusion (few mm to several km) – almost no deformation
- Regional metamorphism: large volume of rock orogenic belt deformation closely related (in time and space)
- **Burial metamorphism:** continuation of the diagenesis
- Hydrothermal metamorphism: produced by hot aqueous solution along fault and fracture
- Shock metamorphism: impact of meteorite
- > High strain metamorphism: intense shearing reduction grain size

PART 1 ORTHOSILICATES

ORTHOSILICATES = NESOSILICATES

"nesos" = island: tetrahedra isolated by cations

Important orthosilicates:

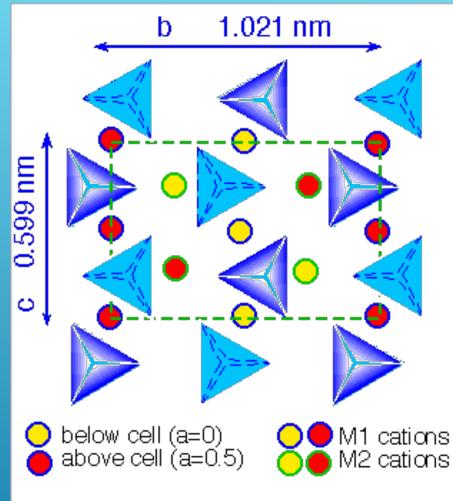
- Olivine
- ► zircon
- Garnet
- > Alumino-silicates (sub-nesosilicates)

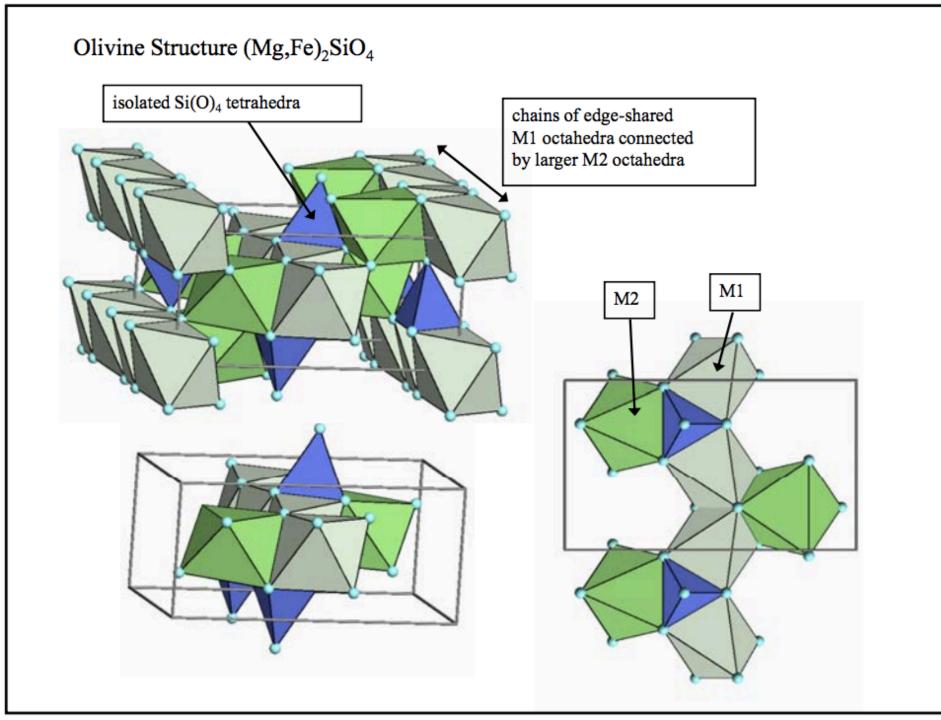
OLIVINE

> What?

- Cations between the tetrahedra: Mg²⁺ and/or Fe²⁺
- (MgFe)₂SiO₄: iwo end-members: Mg₂SiO₄ ÷ Fe₂SiO₄
 forsterite ÷ fayalite
- Olivines: solid solution between 2 end-members (ferrous and magnesium) : Substitution of Fe by Mg (or Mg by Fe)
 can be total (extensive substitution)
- Notation: Fo85 = 85% of Mg₂SiO₄ (forsterite) in the solid solution = $(Mg_{.85}Fe_{.15})_2SiO_4$

OLIVINE

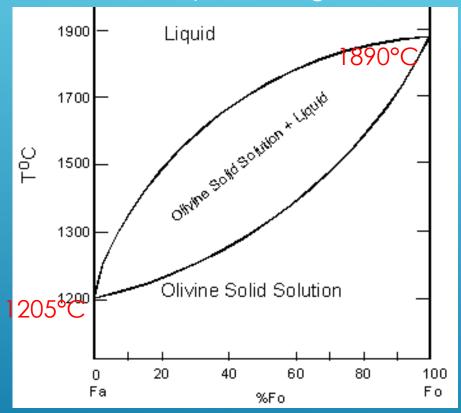

> Where?

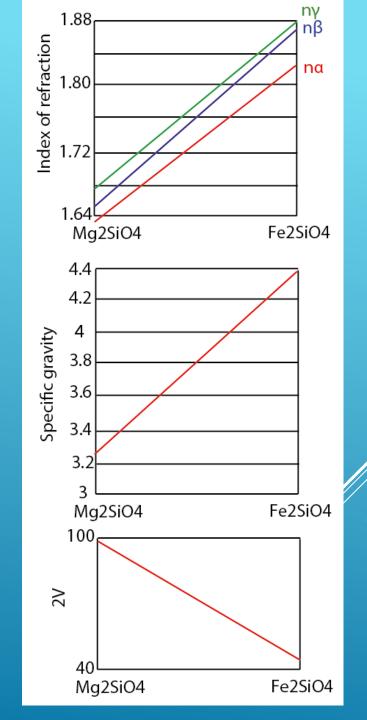

- Basic and ultrabasic rocks
- Major constituent of the upper mantle
- Almost pure forsterite (>Fo₉₅) in some magnesium marble
- Almost pure fayalite (<Fo₁₀): rare but exist in some granites

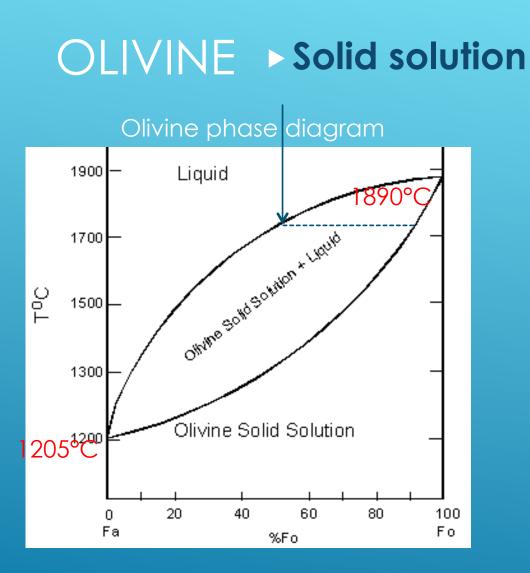
OLIVINE

Structure

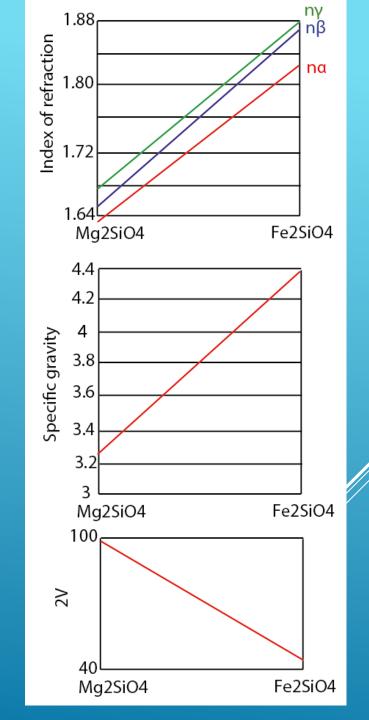
- Chain of edge-shared octahedra (M1 sites) connected by larger (M2)
 octahedra (Fe and Mg occupy both sites with no preference)
- Octahedra crossed-link by independent SiO4 tetrahedra




Source: James J. Wray http:// www.wray.eas.gatech.e du/


OLIVINE Solid solution

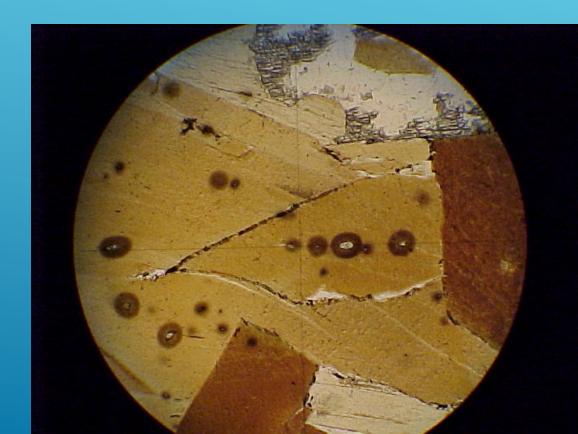
Olivine phase diagram



Incongruent melting: liquid and solid don't have the same composition

Incongruent melting: liquid and solid don't have the same composition

ZIRCON

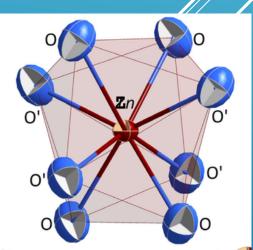

> What?

- ZrSiO₄
- Zr can be substituted by Hf, U or Th but complete substitutions are rare
- U and Th: radioactive elements: allow the dating of rocks: oldest zircon: 4.4 Gy (Australia; Feb. 2014) vs. oldest rock: 4.03 Gy vs. oldest fossil: 3.4 Gy vs oldest proof of life (4.1Gy? Sep. 2015)

ZIRCON

> Where?


- In granitoid (quartz + feldspar)
- Zircon: extremely resistant to alteration => in detritic sedimentary rocks
- As inclusion in biotite



ZIRCON

Structure

- Zr: large cation => CN = 8
- System: tetragonal

GARNET

- $X_3^{2+}Y_2^{3+}[SiO_4^{4-}]_3$

- Aluminous garnet: Y = Al
 - $Mg_3Al_2(SiO_4)_3$; **py**rope
 - $Fe_3Al_2(SiO_4)_3$; almondine
 - $Mn_3Al_2(SiO_4)_3$; **sp**essartine
- Calcic garnet: X = Ca
 - $Ca_3Cr_2(SiO_4)_3$: **u**varovite
 - $Ca_3Al_2(SiO_4)_3$: **gr**ossular
 - Ca₃Fe₂(SiO₄)₃: **and**ratite

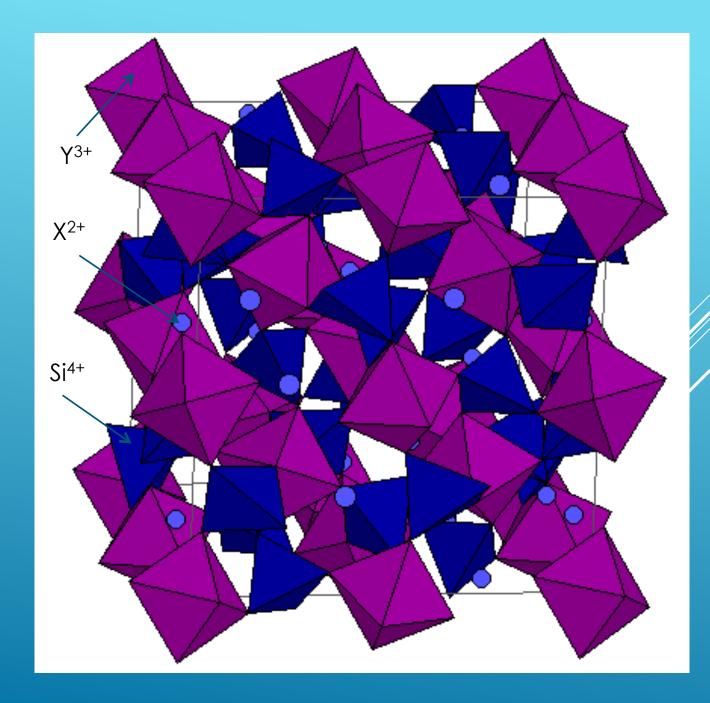
- Pyralspite group

Extensive substitution of Mg, Fe and Mn – most common: ss Pyrope -Almandine or ss almandinespessartine

Ugrandite group

most common: ss grossular and andratite

GARNET


> Where?

- Pyrope-rich garnet (Mg):
 - In peridotite at depth > 90 km (upper mantle)
 - In metabasite (high pressure grade subduction zone)
- > Almandine-rich garnet (Fe):
 - in metamorphic clay (micashistes, metapelites subducted sediments)
 - > In gneiss
- Spessartine-rich garnet (Mn): + rare
 - In dikes from Al-rich granites
- Grossular-rich garnet (Ca): in metamorphosed carbonates around plutons (= skarns)
- > Uvarovite & Andradite: anecdotal

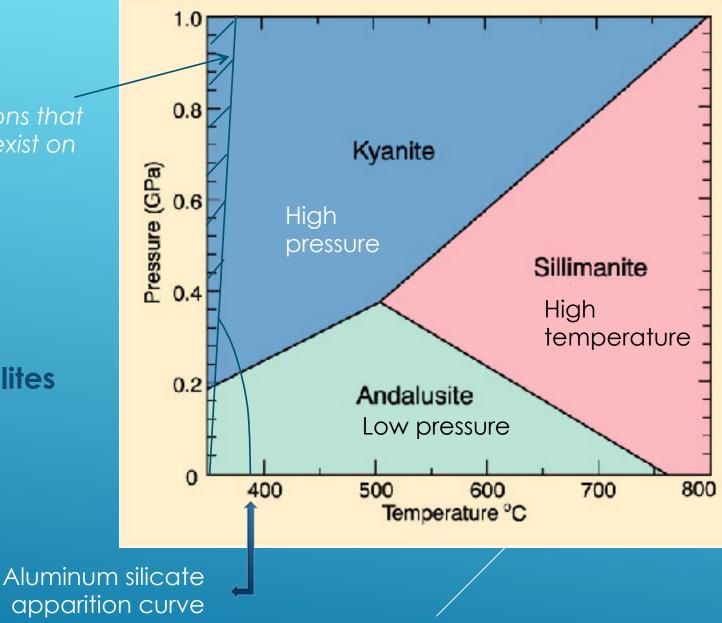
GARNET

Structure

- System: isometric
- Si^{4+} : tetrahedra (CN = 4)
- Y^{3+} : octahedra (CN = 6)
- X²⁺: CN = 8

ALUMINUM SILICATE

> What?


- Al₂OSiO₄ => Al₂SiO₅: Oxygen outside of the tetrahedra. O's do the links between the tetrahedra.
- Andalusite sillimanite kyanite: polymorphs

ALUMINUM SILICATE

Conditions that do not exist on Earth

> Where?

- Exclusively metamorphic
- > Al-rich rocks in clays and pelites
- Indicator of metamorphic conditions

ALUMINUM SILICATE

- Structure
- > Andalusite:
 - Orthorhombic
 - Mostly pure (but possible substitution of Al with Mn³⁺ or Fe³⁺)
- Sillimanite:
 - Orthorhombic
 - Mostly pure (minor amount of Fe³⁺, Cr³⁺ or Ti⁴⁺)
- ►Kyanite:
 - ► Triclinic
 - ► Mostly pure (minor amount of Fe³⁺, Cr³⁺ or Ti⁴⁺)