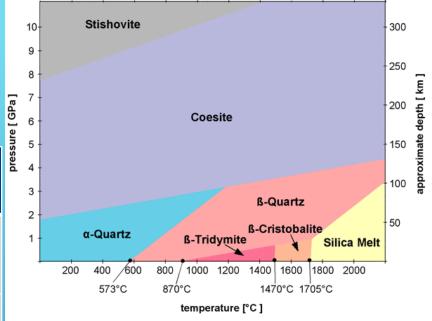
PART 5 FRAMEWORK SILICATES

FRAMEWORK SILICATES = TECTOSILICATES

- > "tecto" = framework
- > 2/3 of the Earth's crust
- Important tectosilicates:
 - ► Quartz
 - Plagioclase
 - Sodalite
 - Leucite
 - Scapolite

- Alkali feldspar
- **Nepheline**
- > Alkali feldspar
- > Leucite
- Scapolite


FRAMEWORK SILICATES = TECTOSILICATES

- All the O in the TO₄ tetrahedra is shared with other tetrahedra: ratio
 Si:O = 1:2
- Si O bonds: strong covalent bonds + interlocked structure ⇒ high hardness.
- > BUT, repulsion of cations in $TO_4 \Rightarrow$ open structures:
 - Can accommodate large cations (Ca²⁺, K⁺, Na⁺) ⇐ substitution of Si for Al in the TO₄
 - Density significantly lower than minerals with anions arrangement in close-packing
 Ex: Quartz (2,65) vs Forsterite (3.27) while Z(Si) = 28.09 and Z(Mg)=24.31

SIO₂ MINERALS

► 7 polymoprhs

Name	Crystal System	Density (g/cm ³)	Comment
Stishovite	Tetragonal	4.35	High pressure
Coesite	Monoclinic	3.01	
Low ($lpha$) quartz	Hexagonal	2.65	Low pressure
High (β) quartz	Hexagonal	2.53	from low to high temperature
Kaetite (synthetic)	Tetragonal	2.50	* high to low transformations:
Low (α) Tridymite	Mon. or orth	2.26	displacive ⇒ do not exist on
High (β) tridymite	Hexagonal	2.22	Earth'surface
Low (<i>a</i>) cristobalite	Tetragonal	2.32	
High (β) cristobalite	Isometric	2.20	

SIO₂ MINERALS

Quartz

- Crystals from microscopic to several tons
- Euhedral (in cavities), anhedral (ex.: in granite), microcrystalline masses (chert) or as fibrous masses (chalcedony)
- > Where? One of the most common minerals
 - siliceous igneous rocks (rhyolite, granite)
 - metamorphic rocks all grades main constituent of sand
 - varieties of sedimentary rock because highly resistant to weathering
- > Varieties: rock crystal (clear, in open cavities)
 - Amethyst (violet due to trace of iron)
 - Rose quartz (due to traces of Ti)
 - Smokey quartz (dark traces of Al)
 - Citrine (yellow)
 - Milky quartz (white due to fluid inclusions in pegmatite and hydrothermal veins)
 - Chalcedony (fibrous)

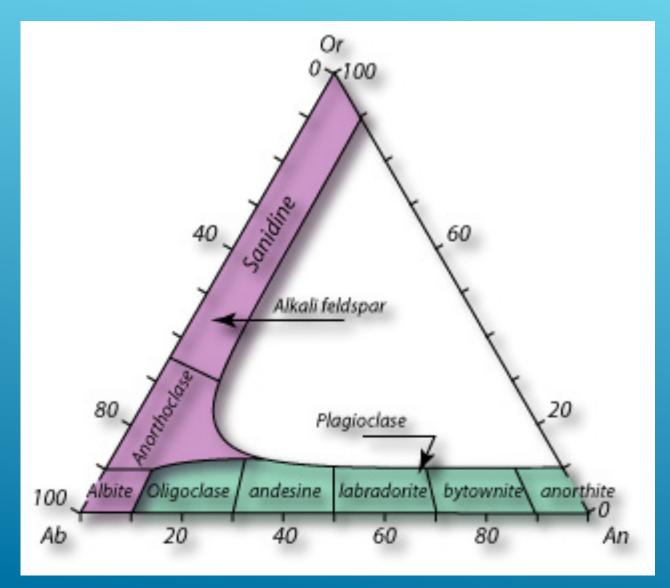
Quartz

SIO₂ MINERALS

Trydinite

- High temperature polymorph
- Where? Igneous rocks that cooled rapidly: rhyolite, associated with cristobalite and sanidine

Cristobalite

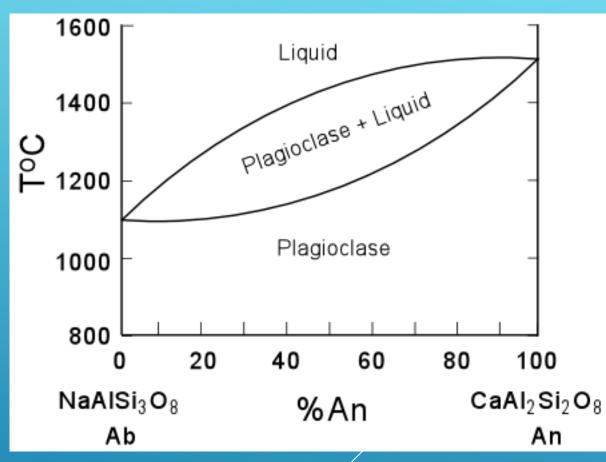

- > High temperature polymorph
- Where? Igneous rocks that cooled rapidly: rhyolite, associated with trydinite and sanidine
 - Thermally metamorphosed sandstones

Opal

- > amorphous: $SiO_2 \cdot nH_2O$
- Crystallize at low temperature in fracture or faults of many different rocks

- Most common mineral in Earth's crust
- > 3 end-members:

	Orthoclase (or)	Albite (ab)	Anorthite (an) CaAl ₂ Si ₂ O ₈
	KAlSi ₃ O ₈	NaAlSi ₃ O ₈	
Alkali Feld	Ispars solid solution	Plagiocla	y ase Feldspars solid solution
	replaced by Al ³⁺ nodation of K ⁺ or Na ⁺	- 1/4 to - Acc	o ½ of Si ⁴⁺ replaced by A ³⁺ commodation of Na ⁺ or Ca ²⁺


- Alkali feldspar solid-solution:
 - < 5% an component
- Plagioclase solid-solution:
 - < 5% or component

- Plagioclase (Ca, Na)(Al,Si)₄O₈
 - Most common feldspar
 - Forms by the crystallisation of a magma
 - Solid-solution with coupled substitution Na⁺+Si⁴⁺ ↔ Ca²⁺+Al³⁺

> Where?

- in basalts, andesites, dacites, rhyolites, gabbros, diorites, granodiorites, and granites: with albite twinning.
- in metamorphic rock: no twin
- not common in clastic sedimentary rock (less stable than alkali feldspar)

Identification with hand specimen: white colored and shows perfect {100} and good {010} cleavage. Can show zoning and twins

Zoning = incomplete reaction of crystals with liquid during cooling of a solid solution

Alkali feldspar (K, Na)AlSi₃O₈

Sanidine (HT) vs. orthoclase (MD), microcline (LT): order-disorder transformations
 Volcanic rock Plutonic & metam. rocks (+ exsolution lamellae if cooling very slow)

Sanidine

- Habit: Equant
- Perfect (001) and (010) cleavages
- Orthoclase
 - > in granitic rocks and K Al rich metamorphic rocks.
 - Perfect (001) and (010) cleavages

Microcline

> combination of albite twinning and pericline twinning \Rightarrow cross-hatched pattern (thin section)

Anorthoclase

- > Na-rich feldspar with equivalent amounts of an and or.
- In Na-rich volcanic rock
- Perfect (001) and (010) cleavages
- > Habit: tabular, elongated

FELDSPATOIDS

Similar structure and physical properties than feldspars

Common feldspatoids: nepheline, leucite, sodalite group

> Smaller Si/(Na+K) ratio \Rightarrow never found with quartz

In alkali-rich and silica-poor igneous rocks (not common)

FELDSPATOIDS

Nepheline (Na,K)AlSiO₄

- Where? In both volcanic and plutonic alkali-rich igneous rocks Ex: nepheline syenite, foidite, phonolite
- Associated minerals: K-feldspar, Na-rich feldspar, biotite, sodic and sodic calcic amphibole and/or pyroxene
- Identification: hard to distinguish from feldspars in hand specimen yellowish color alteration

 much easier in this section because hexagonal ⇔ unioxial (while feldspar are biaxial)

FELDSPATOIDS

Sodalite 3NaAlSiO₄.NaCl

- Where? Mostly in plutonic alkali-rich igneous rocks Ex: syenite
 in contact metamorphosed carbonate rocks Ex: lapis lazuli
- Associated minerals: K-feldspar, Na-rich feldspar, biotite, sodic and sodic calcic amphibole and/or pyroxene
- Identification: vitreous, often light to dark blue

► Leucite KAlSi₂O₆

- > Where? Mostly in potassium-rich volcanic rocks
- Associated minerals: plagioclase, nepheline, sanidine, cpx, sodic or sodiccalcic amphiboles
- Identification: inclusion of other minerals are common
 multiple twins