Magnetite

chalcopyrite

Chapter 7 Reflected light optic SARAH LAMBART

http://www.pandageoscience.co.nz/ photomicrographs/

Hematite

http://www.geo.arizona.edu/

Content chapter 7

why reflected light and reflected light microscopes

optical properties in reflected light

other features in reflected light

MINERAL IN REFLECTED LIGHT

Why reflected light?

Opaque = large group of (accessory) minerals that do not transmit significant light. But they do reflect the light back.

► No choice:

electronic microprobe, SEM

experimental charges (in a metal capsule)

What minerals are opaque in thin section?

- significant metal bounding (native element, sulfides, oxides)
- Many are metals: economic importance

Give clue to the petology of the rocks. Ex.: Fe-Ti oxides, Fe sulfides, graphite.

MINERAL IN REFLECTED LIGHT

Reflected light microscope

Incident light inserted from above (rather than below in petrographic microscope) ▶ Most of the time, we used the same microscope: reflected light introduced by inserting a half-silvered mirror

MINERAL IN REFLECTED LIGHT

Reflected light microscope

Use of polished thin section ONLY (no "covered" thin section)

Reflectivity and color: amount and color of the reflected light from the mineral surface

Non-isometric mineral: reflection pleochroism, bireflectance, anisotropism

► Color:

- part of the visible spectrum absorbed instead of being reflected => color
- Useful but <u>subtle</u>: should be used in conjunction with other observations
- Example:
 - Most Fe-oxides: grey
 - Many sulfides: yellow (except sphalerite: grey, and galena: white)

Magnetite Fe_3O_4

Chalcopyrite CuFeS₂

http://www.pandageoscience.co.nz/photomicrographs/

- Reflectance or reflectivity: measure of the ratio of the intensity of reflected light from a mineral's surface to the intensity of incident plane-polarized light (λ = 546 nm).
 Amount of light reflected
- Most opaques: intermittent reflectivities; reflectivity drop when the light is transmitted (most silicates) or absorbed (graphite)
- sphalerite (17%) < magnetite (21%) < galena (43%) < pyrite (54%) < gold (74%)

Other diagnostic properties:

Bireflectance and reflection pleochroism: changes in reflectivity (bireflectance) and/or colour (pleochroism) upon rotation of the microscope's stage.

Ex.: pyrrhotite, hematite and ilmenite

Anisotropy: under cross-polars: variation in color or brightness upon rotation of the stage with 4 positions of extinction. BUT: these effects are much harder to see than with transmitted light

- cleavage: seen as dark lines and straight sided pits
- Ex.: galena: distinctive triangular pits
- Internal reflection: Minerals that are not totally opaque can display colored internal reflections under crossed polars when using bright illumination.
- Ex.: sphalerite, cassierite

Cassierite PRL

Cassierite XRL

- Hardness: Polishing hardness can be judged by the quality of the polished surface (the hardest surfaces have the most mirror-like finishes) and can be tested using the "Kalb line" test. (equivalent to the Becke line):
- When using the high power objective, and a partly closed diaphragm, lowering the stage will cause the "Kalb line" to move from the grain boundary towards the softer of two adjacent mineral grains.

Ex.: Pyrite (yellow white) in an overly polished block stands out in relief against softer chalcopyrite (yellow) and bornite (pinkish brown).

COMMON OPAQUES

Mineral	Formula	Reflect ance	Color	Anisotropy	Hardness	Comments
Gold	Au	75	bright yellow	isotropic	2.5 - 3.0	very bright & soft
Pyrite	FeS ₂	55	Pale_yellow	isotropic	6.0 - 6.5	Hard,_euhedral cubes & triangles
Chalcopyrite	$CuFeS_2$	44	Strong yellow	weak	3.5 - 4.0	soft, yellow
Pentlandite	(Fe,Ni) ₉ S ₈	47	light, yellow	isotropic	3.5 - 4.0	exsolutions in pyrrhotite
Galena	PbS	43	grey, white	isotropic	2.5	bright white, cleavage, triangular pits
Chalcocite	Cu_2S	32	Light grey	weak	2.5 - 3.0	ductile
Hematite	Fe_2O_3	25-30	Bluish grey	strong	5.0 - 6.0	Internal reflections
Bornite	Cu_5FeS_4	22	pinkish brown	isotropic	3.0	Tarnishes violet/purple
Magnetite	Fe ₃ O ₄	21	brownish grey	isotropic	5.5	lamellae of anisotropic ilmenite or hematite
Ilmenite	FeTiO ₃	17-20	Pinkish grey	strong	5.0 - 6.0	lamellae of isotropic magnetite
Sphalerite	(Zn,Fe)S	17	brownish grey	isotropic	3.5 - 4.0	Internal reflections
Chromite	FeCr ₂ O ₄	12	Dark grey	isotropic	5.5	Internal reflections

IDENTIFICATION PROCEDURE

- ► 1) Look at the hand sample: you can often identify major minerals based on their physical properties (color, luster, streak, cleavages, ect...) ⇒ guess on what other minerals can be present
- 2) look at the thin section in transmitted light to easily recognize the opaques (black)
- ► 3) Look at the thins section with reflected light:
 - ▶ 3.1.) in plane light
 - ▶ 3.2.) in crossed polarized light
- For each: take some notes of all your observations

IDENTIFICATION PROCEDURE

Plane light:

- Reflectance: low, moderate or high; bireflectance: no, weak, strong
- Color and pleochroism: paying attention to subtle shades
- Polishing hardness: Use Kalb line

Crossed polarized light:

- Polarization colors: record color and amount of variation (isotropic/ anisotropic)
- Internal reflection: highlight the color along cracs or imperfections.

Opaque Mineral Identification Flow Chart

COLOR

Quartz gangue

Pyrite

chalcopyrite

galena

sphalerite

http://www.turnstone.ca/

COLOR

Quartz gangue

galena

Gold

chalcopyrite

sphalerite

http://www.turnstone.ca/

POLISHING HARDNESS

ANISOTROPY

SURFACE OXIDATION

Thin sections need to be regularly repolished to avoid the effect of the surface oxidation

OTHER PROPERTIES (not discussed in class)

Magnetite

Exsolution lamellae

Ilmenite lamellae

http://www-odp.tamu.edu/

OTHER PROPERTIES (not discussed in class) Exsolution lamellae

OTHER PROPERTIES (not discussed in class) Alteration

FOR FUN!

0

Happy sulfide

Happy sulfide 2

0

8

Ghost sulfide