A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks, R.S.J. (1998). Basanite–phonolite lineages of the Teide-Pico Viejo volcanic complex, Tenerife, Canary Islands. Journal of Petrology 39, 905–936. doi:10.1093/petroj/39.5.905
Ackerman L, Jelínek E, Medaris Jr. G, Ježek J, Siebel W, Strnad L (2009). Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: insights into subduction-related melt–rock reactions. Chemical Geology 259 (3–4), 152–167. doi:10.1016/j.chemgeo.2008.10.042
Adam J, Green TH, Day RA (1992). An experimental study of two garnet pyroxenite xenoliths from the Bullenmerri and Gnotuk Maars of western Victoria, Australia. Contributions to Mineralogy and Petrology 111(4):505-514. doi:10.1007/BF00320905
Albarède F, Provost A (1977). Petrological and geochemical mass balance equations: an algorithm for least-square fitting and general error analysis. Computers & Geosciences 3:309-326. doi:10.1016/0098-3004(77)90007-3
Allègre CJ, Schiano P, Lewin E (1995). Differences between oceanic basalts by multitrace element ratio topology. Earth and Planetary Science Letters 129:1-12. doi:10.1016/0012-821x(94)00235-q
Allègre CJ, Turcotte DL (1986). Implications of a two-component marble-cake mantle. Nature 323:123-127. doi:10.1038/323123a0
Allen RM (2002). Plume-driven plumbing and crustal formation in Iceland. Journal of Geophysical Research 107(2163). doi:10.1029/2001JB000584
Ancey M, Bastenaire F, Tixier R (1978) Application des méthodes statistiques en microanalyse. In: Maurice F, Meny L, Tixier R (eds) Microanalyse, microscopie électronique à balayage. Les éditions du Physicien, Orsay, pp 323-347 isbn:9782902731190
Anderson AT, Brown GG (1993). CO2 and formation pressures of some Kilauean melt inclusions. American Mineralogist 78, 794–803. link
Anderson DL (2005) Scoring hotspots: the plume and plate paradigms. In: Plates, Plumes, and Paradigms. Special papers (Geological Society of America), vol. 388, pp. 31–54. isbn:9780813723884
Arculus RJ, Johnson RW, Chappell BW, McKee CO, Sakai H (1983). Ophiolitecontaminated andesites, trachybasalts, and cognate inclusions of Mount Lamington, Papua New Guinea: anhydrite-amphibole-bearing lavas and the 1951 cumulodome. Journal of Volcanology and Geothermal Research 18 (1–4), 215–247. doi:10.1016/0377-0273(83)90010-0
Arevalo Jr. R, McDonough WF, Luong M (2009). The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters 278, 361–369. doi:10.1016/j.epsl.2008.12.023
Arndt NT (2013). Formation and evolution of the continental crust. Geochemical Perspectives, 2(3), 405–533. doi:10.7185/geochempersp.2.3
Asimow PD, Dixon JE, Langmuir CH (2004). A hydrous melting and fractionation model for mid-ocean ridge basalts: applications to the MidAtlantic Ridge near the Azores. Geochem. Geophys. Geosyst. 5, Q01E16. 10.1029/2003GC000568. link
Asimow PD, Ghiorso MS (1998). Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist 83, 1127-1132. doi:10.2138/am-1998-9-1022
Asimow PD, Hirschmann MM, Ghiorso MS, O’Hara MJ, Stolper EM (1995). The effect of pressure-induced solid-solid phase transitions on decompression melting of the mantle. Geochimica et Cosmochimica Acta 59(21), 4489-4506. doi:10.1016/0016-7037(95)00252-u
Asimow PD, Hirschmann MM, Stolper EM (1997). An analysis of variations in isentropic melt productivity. Philosophical Transactions of the Royal Society of London, Series A 355, 255–281. doi:10.1098/rsta.1997.0009
Asimow PD, Hirschmann MM, Stolper EM (2001). Calculations of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of Mid-ocean Ridge Basalts. Journal of Petrology 42(5):963-998. doi:10.1093/petrology/42.5.963
Asimow PD, Langmuir CH (2003). The importance of water to oceanic mantle melting regimes. Nature, 421, 815-820. doi:10.1038/nature01429
Asimow PD, Langmuir CH (2003). The importance of water to oceanic mantle melting regimes. Nature 421, 815–820. doi:10.1038/nature01429
Asimow PD, Stolper EM (1999). Steady-state mantle-melt interactions in one dimension: equilibrium, transport and melt focusing. Journal of Petrology 40(3):475-494. doi:10.1093/petrology/40.3.475
Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Doyle BJ (2007). Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion. Contributions to Mineralogy and Petrology 154, 409-427. doi:10.1007/s00410-007-0200-1
Bailey, D.K. (1987). Mantle metasomatism - perspective and prospect. In: Geological Society, London, Special Publications, 30, 1–13. doi:10.1144/GSL.SP.1987.030.01.02
Baker MB, Beckett JR (1999). The origin of abyssal peridotite: a reinterpretation of constraints based on primary bulk composition. Earth and Planetary Science Letters 171:49-61. doi:10.1016/S0012-821X(99)00130-2
Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995). Compositions of nearsolidus peridotite melts from experiments and thermodynamic calculations. Nature 375:308-311. doi:10.1038/375308a0
Baker MB, Stolper EM (1994). Determining the composition of high pressure mantle melts using diamond aggregates. Geochimica et Cosmochimica Acta 58:2811-2827. doi:10.1016/0016-7037(94)90116-3
Bartels K, Kinzler R, Grove T (1991). High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contributions to Mineralogy and Petrology, 108(3), 253-270. doi:10.1007/BF00285935
Batiza R, Niu Y, Zayac WC (1990). Chemistry of seamounts near the East Pacific Rise: implications for the geometry of subaxial mantle flow. Geology 18, 1122–1125. doi:10.1130/0091-7613(1990)018<1122:cosnte>2.3.co;2
Beattie P (1993). Uranium-thorium disequilibria and partitioning on melting of garnet peridotite. Nature, 363, 63–65. doi:10.1038/363063a0
Beattie P (1993). Olivine-melt and orthopyroxene-melt equilibria. Contributions to Mineralogy and Petrology 115, 103–111. doi:10.1007/BF00712982
Beattie P, Ford C, Russell D (1991). Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contributions to Mineralogy and Petrology 109, 212–224. doi:10.1007/BF00306480
Becker H (1996). Crustal trace element and isotopic signatures in garnet pyroxenites from garnet peridotite massifs from lower Austria. Journal of Petrology, 37:785-810. doi:10.1093/petrology/37.4.785
Bedini RM, Bodinier JL, Vernieres J (2002). Numerical simulation of Mg-Fe partitioning during melting and melt-rock interactions in the shallow upper mantle. Orogenic Lherzolite Conference, Japan 2002 link
Bender JF, Hodges FN, Bence AE (1978). Petrogenesis of basalts from the project FAMOUS area: experimental study from 0 to 15 kbars. Earth and Planetary Science Letters, 41, 277–302. doi:10.1016/0012-821X(78)90184-X
Berman RG, Koziol AM (1991). Ternary excess properties of grossular-pyrope-almandine garnet and their influence in geothermobarometry. American Mineralogist 76, 1223-1231. doi:10.1038/271533a0
Bizimis M, Griselin M, Lassiter JC, Salters VJM, Sen G (2007). Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters, 257(1–2), 259–273. doi:10.1016/j.epsl.2007.02.036
Bjarnason IT, Schmeling H (2009). The lithosphere and asthenosphere of the Iceland hotspot from surface waves. Geophysical Journal International 178, 394–418. doi:10.1111/j.1365-246X.2009.04155.x
Blichert-Toft J, Albarède F, Kornprobst J (1999). Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco: implications for basalt origin. Science 283:1303-1306. doi:10.1126/science.283.5406.1303
Blundy JD, Falloon TJ, Wood BJ, Dalton JA (1995). Sodium partitioning between clinopyroxene and silicate melts. Journal of Geophysical Research: Solid Earth, 100(B8), 15501–15515. link
Blundy JD, Robinson JAC, Wood BJ (1998). Heavy REE are compatible in clinopyroxene on the spinel lherzolite. Earth and Planetary Science Letters 160, 493–504. doi:10.1016/S0012-821X(98)00106-X
Blundy JD, Wood BJ (1991). Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts and hydrothermal solutions. Geochimica et Cosmochimica Acta 55, 193–209. doi:10.1016/0016-7037(91)90411-W
Bodinier JL, Garrido CJ, Chanefo I, Brugruier O, Gervilla F (2008). Origin of pyroxenite-peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). Journal of Petrology 49(5), 999-1025. doi:10.1093/petrology/egn014
Bodinier JL, Godard M (2003). Orogenic, ophiolitic, and abyssal peridotites. Treatise on Geochemistry, Volume 2, pp 1-70. doi:10.1016/B0-08-043751-6/02004-1
Bodinier JL, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido CJ (1996). Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochimica et Cosmochimica Acta 60, 545–550. doi:10.1016/0016-7037(95)00431-9
Bonatti E (1990). Not so hot “hotspots” in the oceanic mantle. Science 250, 107–111. doi:10.1126/science.250.4977.107
Borghini G, Fumagalli P, Rampone E (2010). The stability of plagioclase in the upper mantle: subsolidus experiments on fertile and depleted lherzolite. Journal of Petrology 51, 229–254. doi:10.1093/petrology/egp079
Braun MG (2004). Petrologic and microstructural constraints on focused melt transport in dunites and the rheology of the shallow mantle. PhD Thesis, Massachusetts Institute of Technology link
Braun MG, Kelemen PB (2002). Dunite distribution in the Oman Ophiolite: implications for melt flux through porous dunite conduits. Geochemistry Geophysics Geosystems 3(11):1-21 doi:10.1029/2001GC000289
Breddam K (2002). Kistufell: primitive melt from the Iceland mantle plume. Journal of Petrology 43, 345–373. doi:10.1093/petrology/43.2.345
Breddam K, Kurz MD, Storey M (2000). Mapping out the conduit of the Iceland mantle plume with helium isotopes. Earth and Planetary Science Letters 176, 45–55. doi:10.1016/S0012-821X(99)00313-1
Brown EL, Lesher CE (2014). North Atlantic magmatism controlled by temperature, mantle composition and buoyancy. Nature Geoscience 7(11), 820–824. doi:10.1038/ngeo2264
Brunelli D, Seyler M (2010). Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean). Earth and Planetary Science Letters 289, 393–405. doi:10.1016/j.epsl.2009.11.028
Canil D (1999). The Ni-in-garnet geothermometer: calibration at natural abundances. Contributions to Mineralogy and Petrology 136, 140–246 doi:10.1007/s004100050535
Carmichael IS E., Nicholls J, Smith AL (1970). Silica activity in igneous rocks. American Mineralogist 55, 246-263. link
Chalot-Prat F, Falloon TJ, Green DH, Hibberson WO (2010). An experimental study of liquid compositions in equilibrium with plagioclase + spinel lherzolite at low pressures (0.75 GPa) . Journal of Petrology 51, 2349–2376. doi:10.1093/petrology/egq060
Chase CG (1981). Oceanic island Pb: two stage histories and mantle evolution. Earth and Planetary Science Letters 52, 277–284. doi:10.1016/0012-821x(81)90182-5
Chauvel C, Hémond C (2000). Melting of a complete section of recycled oceanic crust: trace element and Pb isotopic evidence from Iceland. Geochemistry Geophysics Geosystems 1. doi:10.1029/1999GC000002
Christie DM, Carmichael ISE, Langmuir CH (1986). Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters 79:397-411. doi:10.1016/0012-821X(86)90195-0
Coltorti M, Beccaluva L, Bonadiman C, Salvini L, Siena F (2000). Glasses in mantle xenoliths as geochemical indicators of metasomatic agents. Earth and Planetary Science Letters 183, 303–320. doi:10.1016/S0012-821X(00)00274-0
Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999). Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology 40, 133–165. doi:10.1093/petroj/40.1.133
Conceição RV, Green DH (2004). Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72, 209–229. doi:10.1016/j.lithos.2003.09.003
Condamine P, Médard E (2014). Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth and Planetary Science Letters 397, 80–92. doi:10.1016/j.epsl.2014.04.027
Constable S, Heinson G (2004). Hawaiian hot-spot swell structure from seafloor MT sounding. Tectonophysics 389, 111–124. doi:10.1016/j.tecto.2004.07.060
Cottrell E, Kelley KA (2011). The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters 305, 270-282. doi:10.1016/j.epsl.2011.03.014
Courtier AM, Jackson MG, Lawrence JF, Wang Z, Lee C-TA, Halama R, Warren JM, Workman R, Xu W, Hirschmann MM, Larson AM, Hart SR, Lithgow-Bertelloni C, Stixrude L, Chen WP (2007). Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth and Planetary Science Letters 264 (1–2), 308–316. doi:10.1016/j.epsl.2007.10.003
Daines MJ, Kohlstedt DL (1994). The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophys Res Lett 21:145-148. doi:10.1029/93GL03052
Darbyshire FA, White RS, Priestley KF (2000). Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth and Planetary Science Letters 181, 409–428. doi:10.1016/S0012-821X(00)00206-5
Dasgupta R, Hirschmann MM (2006). Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 440, 659–662. doi:10.1038/nature04612
Dasgupta R, Hirschmann MM (2010). The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters 298, 1–13. doi:10.1016/j.epsl.2010.06.039
Dasgupta R, Hirschmann MM, Smith ND (2007). Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology 48 (11), 2093–2124. doi:10.1093/petrology/egm053
Dasgupta R, Jackson MG, Lee C-TA (2010). Major element chemistry of ocean island basalts — conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters 289, 377–392. doi:10.1016/j.epsl.2009.11.027
Dautria JM, Girod M (1983). The upper mantle beneath eastern Nigeria: inferences from ultramafic xenoliths in Jos and Biu volcanics. Journal of African Earth Sciences 1, 331–338. doi:10.1016/S0731-7247(83)80019-6
Davis FA, Hirschmann MM (2013). The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contributions to Mineralogy and Petrology 166, 1029–1046. doi:10.1007/s00410-013-0907-0
Davis FA, Hirschmann MM, Humayun M (2011). The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth and Planetary Science Letters 308 (3–4), 380–390. doi:10.1016/j.epsl.2011.06.008
Davis FA, Tangeman JA, Tenner TJ, Hirschmann MM (2009). The composition of KLB-1 peridotite. American Mineralogist, 94, 176–180 doi:10.2138/am.2009.2984
Day DJM, Pearson DG, Macpherson CG, Lowry D, Carracedo JC (2009). Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Island lavas. Geology, 37(6), 555–558. doi:10.1130/G25613A.1
Dessai AG, Markwick A, Vaselli O, Downes H (2004). Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78:263-290. doi:10.1016/j.lithos.2004.04.038
Dick HJB (1989). Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. Geological Society, London, Special Publications, 42, 71-105. doi:10.1144/GSL.SP.1989.042.01.06
Dick HJB, Sinton JM (1979). Compositional layering in Alpine peridotites: evidence for pressure solution creep in the mantle. Journal of Geology 87, 403-416. doi:10.1086/628428
Dickey JS (1970). Partial fusion products in alpine-type peridotites: Serrania de la Ronda and other examples. Mineralogical Society of America Special Paper 3:33-50. link
Downes H (2007). Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99, 1–24. doi:10.1016/j.lithos.2007.05.006
Draper D, Johnston AD (1992). Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contributions to Mineralogy and Petrology, 112(4), 501-519. doi:10.1007/BF00310781
Draper DS, Green TH (1997). P–T phase relations of silicic, alkaline, aluminous mantle–xenolith glasses under anhydrous and C–O–H fluid saturated conditions. Journal of Petrology 38, 1187–1224. doi:10.1093/petroj/38.9.1187
Draper DS, Green TH (1999). P–T phase relations of silicic, alkaline, aluminous liquids: new results and applications to mantle melting and metasomatism. Earth and Planetary Science Letters 170, 255–268. doi:10.1016/S0012-821X(99)00111-9
Ducea MN (2002). Constraints on the bulk composition and root foundering rates of continental arcs: a California arc perspective. Journal of Geophysical Research 107(B11):2304. doi:10.1029/2001JB000643
Dupré B, Allègre CJ (1983). Pb-Sr isotope variation in Indian Ocean Basalts and mixing phenomena. Nature 303:142-146. doi:10.1038/303142a0
Eason D, Sinton J (2006). Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters 252, 423–436. doi:10.1016/j.epsl.2006.09.048
"Eason DE, Sinton JM (2009). Lava shields and fissure eruptions of the Western Volcanic Zone, Iceland: Evidence for magma chambers and crustal interaction. Journal of Volcanology and Geothermal Research 186, 331–348. doi:10.1016/j.jvolgeores.2009.06.009
"Eggins SM (1992). Petrogenesis of Hawaiian tholeiites: 1, phase equilibria constraints. Contributions to Mineralogy and Petrology 110, 387–397. doi:10.1007/BF00310752
Eiler JM, Schiano P, Kitchen N, Stolper EM (2000). Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 403:530-534. doi:10.1038/35000553
Elkins LJ, Sims K, Prytulak J, Elliott T, Mattielli N, J. Blichert-Toft, Blusztajn J, Dunbar N, Devey C, Mertz DF, Schilling JG, Murrell M (2011). Understanding melt generation beneath the slow-spreading Kolbeinsey Ridge using 238U, 230Th, and 231Pa excesses. Geochimica et Cosmochimica Acta, 75(21), 6300–6329. link
Elkins-Tanton LT (2005). Continental magmatism caused by lithospheric delamination. Geological Society of America Special Papers, 388, 449–461. link
Elthon D (1979). High magnesia liquids as the parental magma for ocean floor basalts. Nature 278:514-518. doi:10.1038/278514a0
Elthon D (1987). Petrology of gabbroic rocks from the mid-Cayman Rise spreading center. Journal of Geophysical Research 92:658-682. doi:10.1029/JB092iB01p00658
Elthon D (1989). Pressure of origin of primary mid-ocean ridge basalts. Geological Society, London, Special Publications, 42, 125-136 doi:10.1144/GSL.SP.1989.042.01.08
Elthon D, Scarfe CM (1980). High-pressure phase equilibria of a high magnesia basalt: implications for the origin of mid-ocean ridge basalts. Carnegie Institution of Washington Yearbook, pp 277-281 link
Elthon D, Scarfe CM (1984). High-pressure phase equilibria of a high magnesia basalt and the genesis of primary oceanic basalts. American Mineralogist 69:1-15 link
Falloon TJ, Danyushevsky LV (2000). Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. Journal of Petrology 41:257-283. doi:10.1093/petrology/41.2.257
Falloon TJ, Green DH (1990). Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology, 18(3), 195–199. doi:10.1130/0091-7613(1990)018<0195:SOCFPU>2.3.CO;2
Falloon TJ, Green DH, Danyushevsky LV (2001). Peridotite melting at 1 GPa; reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. Journal of Petrology, 42, 2363–2390. doi:10.1093/petrology/42.12.2363
Falloon TJ, Green DH, Danyushevsky LV, Faul UH (1999). Peridotite melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. Journal of Petrology 40, 1343–1375. doi:10.1093/petroj/40.9.1343
Falloon TJ, Green DH, Danyushevsky LV, McNeill AW (2008). The composition of near-solidus partial melts of fertile peridotite at 1 and 1.5 GPa, implications for the petrogenesis of MORB. Journal of Petrology 49 (4), 591–616. doi:10.1093/petrology/egn009
Falloon TJ, Green DH, O’Neill HStC., Hibberson WO (1997). Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth and Planetary Science Letters 152, 149–162. doi:10.1016/S0012-821X(97)00155-6
Farnetani CG, Hofmann AW (2010). Dynamics and internal structure of the Hawaiian plume. Earth and Planetary Science Letters 295 (1–2), 231–240. doi:10.1016/j.epsl.2010.04.005
Faul UH (1997). Permeability of partially molten upper mantle rocks from experiments and percolation theory. Journal of Geophysical Research 102(B5), 10299-10311. doi:10.1029/96jb03460
Fedorova T, Jacoby WR, Wallner H (2005). Crust–mantle transition and Moho model for Iceland and surroundings from seismic, topography, and gravity data. Tectonophysics 396, 119–140. doi:10.1016/j.tecto.2004.11.004
Fitton GJ, Saunders AD, Kempton PD, Hardarson BS (2003). Does depleted mantle form an intrinsic part of the Iceland plume? Geochemistry Geophysics Geosystems 4. doi:10.1029/2002GC000424
Fitton GJ, Saunders AD, Norry MJ, Hardarson BS, Taylor RN (1997). Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters 153, 197–208. doi:10.1016/S0012-821X(97)00170-2
Foulger GR (2007). The “plate” model for the genesis of melting anomalies. Geological Society of American Special Papers, vol. 430, pp. 1–28. doi:10.1130/2007.2430(01)
Fram MS, Lesher CE (1993). Geochemical constraints on mantle melting during creation of the North Atlantic basin. Nature, 363, 712-715. doi:10.1038/363712a0
Fujii T, Bougault H (1983). Melting relations of a magnesian abyssal tholeiite and the origin of MORBs. Earth and Planetary Science Letters, 62(2), 283-295.c doi:10.1016/0012-821X(83)90091-2
Gaetani GA (2004). The influence of melt structure on trace-element partitioning near the peridotite solidus. Contributions to Mineralogy and Petrology 147, 511–527. doi:10.1007/s00410-004-0575-1
Gaetani GA, Grove TL (1998). The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology 131, 323–346. doi:10.1007/s004100050396
Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013). The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518. doi:10.1029/2012GC004334
Garrido CJ, Bodinier JL (1999). Diversity ofmafic rocks in the Ronda peridotite: evidence for persuasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology 40:729-754. doi:10.1093/petroj/40.5.729
Gee MAM, Taylor RN, Thirlwall MF, Murton BJ (1998). Glacioisostacy controls the chemical and isotopic characteristics of tholeiites from Reykjanes Peninsula, SW Iceland. Earth and Planetary Science Letters 164, 1–5. doi:10.1016/S0012-821X(98)00246-5
Gee MAM, Thirlwall MF, Taylor RN, Lowry D, Murton BJ (1998). Crustal processes: major controls on Reykjanes peninsula lava chemistry, SW Iceland. Journal of Petrology 39, 819–839. doi:10.1093/petroj/39.5.819
Ghent ED, Coleman RG, Hadley DG (1980). Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Saudi Arabia. American Journal of Science 280:499-527. link
Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002). The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPA. Geochemistry Geophysics Geosystems 3:5 doi:10.1029/2001GC000217
Ghiorso MS, Sack RO (1995). Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119(2/3):197-212. doi:10.1007/BF00307281
Ghods A, Arkani-Hamed J (2000). Melt migration beneath mid-ocean ridges. Geophysical Journal International 140(3), 687-697. doi:10.1046/j.1365-246X.2000.00032.x
Gibson SA, Geist D (2010). Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos. Earth and Planetary Science Letters 300, 275–286. doi:10.1016/j.epsl.2010.10.002
Giordano D, Russell JK, Dingwell DB (2008). Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters 271, 123–134. doi:10.1016/j.epsl.2008.03.038
Godard M, Bodinier JL, Vasseur G (1995). Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: a chromatographic approach. Earth and Planetary Science Letters 133:449-461. doi:10.1016/0012-821X(95)00104-K
Gonzaga RG, Lowry D, Jacob DE, LeRoex A, Schulze D, Menzies MA (2010). Eclogites and garnet pyroxenites: Similarities and differences. Journal of Volcanology and Geothermal Research, 190, 235–247. doi:10.1016/j.jvolgeores.2009.08.022
Grant TB, Milke R, Pandey S, Jahnke H (2013). The Heldburg phonolite, Central Germany: reactions between phonolite and xenocrysts from the upper mantle and lower crust. Lithos 182–183, 86–101. doi:10.1016/j.lithos.2013.09.012
Green DH (1973). Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth and Planetary Science Letters 19, 37–53. doi:10.1016/0012-821X(73)90176-3
Green DH, Edgar AD, Beasley P, Kiss E, Ware NG (1974). Upper mantle source for some hawaiites, mugearites and benmoreites. Contributions to Mineralogy and Petrology 48, 33–43. doi:10.1007/BF00399108
Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001). Primary magmas and mantle temperatures. Eur. J. Mineral. 13:437-451. doi:10.1127/0935-1221/2001/0013-0437
Green DH, Hibberson WO, Jaques AL (1979) Petrogenesis of midocean ridge basalts. In: The earth: its origin, structure and evolution. Academic Press, London isbn:9780124827509
Green DH, Ringwood AE (1967). The genesis of basaltic magmas. Contributions to Mineralogy and Petrology, 15(2), 103–190. doi:10.1007/BF00372052
Green DH, Ringwood AE (1967). The genesis of basaltic magmas. Contributions to Mineralogy and Petrology 15 (2), 103–190. doi:10.1007/BF00372052
Green ECR, Holland TJB, Powell R, White RW (2012). Garnet and spinel lherzolite assemblages in MgO–Al2O3–SiO2 and CaO–MgO–Al2O3–SiO2: thermodynamic models and an experimental conflict. J. Metamorph. Geol. 30, 561–577. doi:10.1111/j.1525-1314.2012.00981.x
Griffin WL, O’Reilly SY, Ryan CG (1999) The composition and origin of subcontinental lithospheric mantle. In: Fei Y, Bertka CM & Mysen BO (eds) Mantle Petrology: Field Observations and High-pressure Experimentation. Geochemical Society of Amrica Special Publications 6, 13-45. isbn:9780941809054
Grove T, Holbig E, Barr J, Till C, Krawczynski M (2013). Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contributions to Mineralogy and Petrology, 166(3), 887–910. doi:10.1007/s00410-013-0899-9
Grove TL, Kinzler RJ, Bryan WB (1992). Fractionation of Mid-Ocean Ridge Basalt (MORB). Geophysical Monograph 71:281-310. doi:10.1029/gm071p0281
Gudfinnsson GH, Presnall DC (2000). Melting Behaviour of Model Lherzolite in the System CaO-MgO-Al2O3-SiO2-FeO at 0.7-GPa-2.8 GPa. Journal of Petrology 41:1241-1269. doi:10.1093/petrology/41.8.1241
Halldórsson SA, Hilton DR, Barry PH, Füri E, Grönvold K (2016). Recycling of crustal material by the Iceland mantle plume: New evidence from nitrogen elemental and isotope systematics of subglacial basalts. Geochimica et Cosmochimica Acta 176, 206–226. doi:10.1016/j.gca.2015.12.021
Hanson GN (1977). Geochemical evolution of the suboceanic mantle. Journal of the Geological Society 134 (2), 235–253. doi:10.1144/gsjgs.134.2.0235
Hardarson BS, Fitton JG (1997). Mechanisms of crustal accretion in Iceland. Geology 25, 1043–1046. doi:10.1130/0091-7613(1997)025<1043:MOCAII>2.3.CO;2
Hart SR (1993). Equilibration during mantle melting: a fractal tree model. Proceedings of the National Academy of Sciences of the USA 90:11914-11918. doi:10.1073/pnas.90.24.11914
Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999). The fingerprint of seawater circulation in a 500-meter section of oceanic crust gabbros. Geochimica et Cosmochimica Acta 63, 4059–4080. doi:10.1016/S0016-7037(99)00309-9
Hauri EH (1996). Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419. doi:10.1038/382415a0
Hauri EH, Hart SR (1997). Rhenium abundances and systematics in oceanic basalts. Chemical Geology, 139(1–4), 185–205. doi:10.1016/S0009-2541(97)00035-1
Hay DE, Wendlandt RF (1995). The origin of Kenya rift plateau-type flood phonolites: results of high-pressure/high-temperature experiments in the systems phonolite–H2O and phonolite–H2O–CO2. Journal of Geophysical Research 100:B1, 401–410. doi:10.1029/94JB02160
Hékinian R, Juteau T, Gràcia E, Sichler B, Sichel S, Udintsev G, Apprioual R, Ligi M (2000). Submersible observations of Equatorial Atlantic mantle: The St Paul Fracture Zone region. Marine Geophysical Researches 21, 529–560. doi:10.1023/A:1004819701870
Helffrich G, Wood BJ (2001). The Earth's mantle. Nature 412, 501–507. doi:10.1038/35087500
Hémond C, Arndt N, Litchenstein U, Hofmann A, Oskarsson N, Steinthorsson S (1993). The heterogeneous Iceland plume: Nd–Sr–O isotopes and trace element constraints. Journal of Geophysical Research 98, 15833–15850. doi:10.1029/93JB01093
Herbert LB, Montési LGJ (2010). Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochemistry, Geophysics, Geosystems 11(12). doi:10.1029/2010GC003270
Herzberg C (2006). Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444, 605–609. doi:10.1038/nature05254
Herzberg C (2011). Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. Journal of Petrology 52 (1), 113–146. doi:10.1093/petrology/egq075
Herzberg C, Asimow PD (2008). Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems 9 (Q09001). doi:10.1029/2008GC00(2057)
Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007). Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosyst. 8:2 doi:10.1029/2006GC001390
Herzberg C, Feigenson M, Skuba C, Ohtani E (1988). Majorite fractionation recorded in the geochemistry of peridotites from South Africa. Nature, 332(6167), 823–826. doi:10.1038/332823a0
Herzberg C, O'Hara MJ (2002). Plume-associated ultramafic magmas of Phanerozoic age. Journal of Petrology 43 (10), 1857–1883. doi:10.1093/petrology/43.10.1857
Herzberg C, Raterron P, Zhang J (2000). New experimental observations on the anhydrous solidus for peridotite KLB-1. Geochemistry, Geophysics, Geosystems, 1(11), 1051. doi:10.1029/2000GC000089
Herzberg C, Vidito C, Starkey NA (2016). Nickel-cobalt contents of olivine record origins of mantle peridotite and related rocks. American Mineralogist 101, 1952–1966. doi:10.2138/am-2016-5538
Hess PC (1992). Phase equilibria constraints on the Origin of Ocean Floor Basalts. Geophysical Monograph Series 71:67-102 doi:10.1029/gm071p0067
Hirose K (1997). Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophysical Research Letters 24 (22), 2837–2840. doi:10.1029/97GL02956
Hirose K, Kushiro I (1993). Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114:477-489. doi:10.1016/0012-821x(93)90077-m
Hirschmann MM (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry Geophysics Geosystems, 1, paper number 2000GC000070. doi:10.1029/2000GC000070
Hirschmann MM (2006). Water, melting, and the deep Earth H2O cycle. Annual Review of Earth and Planetary Sciences, 34(1), 629–653. doi:10.1146/annurev.earth.34.031405.125211
Hirschmann MM, Asimow PD, Ghiorso MS, Stolper EM (1999). Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. Journal of Petrology, 40(5), 831–851. doi:10.1093/petroj/40.5.831
Hirschmann MM, Baker MB, Stolper EM (1998). The effects of alkalis on the silica content of mantle-derived melts. Geochimica et Cosmochimica Acta 62:883-902. doi:10.1016/s0016-7037(98)00028-3
Hirschmann MM, Ghiorso MS, Davis FA, Gordon SM, Mukherjee S, Grove TL, Krawczynski M, Medard E, Till CB (2008) . Library of experimental phase relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data. Geochemistry, Geophysics, Geosystems 9(3). doi:10.1029/2007GC001894
Hirschmann MM, Ghiorso MS, Stolper EM (1999). Calculation of peridotite partia melting from thermodynamic models of minerals and melts. II. Isobaric variations in melts near the solidus and owing to variable source composition. Journal of Petrology 40, 297–313. doi:10.1093/petroj/40.2.297
Hirschmann MM, Ghiorso MS, Wasylenki LE, Asimow PD, Stolper EM (1998). Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. I. Review of Methods and Comparison with Experiments Journal of Petrology, 39(6), 1091–1115 doi:10.1093/petroj/39.6.1091
Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003). Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481-484. doi:10.1130/0091-7613(2003)031<0481:amgbpm>2.0.co;2
Hirschmann MM, Stolper EM (1996). A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contributions to Mineralogy and Petrology 124:185-208. doi:10.1007/s004100050184
Ho K-s, Chen J-c, Smith AD, Juang WS (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China. Chemical Geology 167 (3–4), 355–372. doi:10.1016/S0009-2541(99)00237-5
Hofmann AW (1997). Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229. doi:10.1038/385219a0
Hofmann AW (2007). Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Treatise on Geochemistry: vol. 2: The Mantle and Core, p1-44. doi:10.1016/B0-08-043751-6/02123-X
Hofmann AW, White MW (1982). Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57, 421–436. doi:10.1016/0012-821X(82)90161-3
Holland TJB, Hudson NFC, Powell R, Harte B (2013). New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. Journal of Petrology 54, 1901–1920. doi:10.1093/petrology/egt035
Holland TJB, Powell R (1998). An internally consistent thermodynamic dataset for phases of petrological interest. J. Metamorph. Geol. 16, 309–343. doi:10.1111/j.1525-1314.1998.00140.x
Holland TJB, Powell R (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383. doi:10.1111/j.1525-1314.2010.00923.x
Holtzman BK, Groebner NJ, Zimmerman ME, Ginsberg SB (2003). Stress-driven melt segregation in partially molten rocks. Geochemistry, Geophysics, Geosystems 4(5). doi:10.1029/2001GC00258
Huang F, Lundstrom CC, McDonough WF (2006). Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. American Mineralogist 91, 1385–1400. doi:10.2138/am.2006.1909
Hubbard NJ (1969). A chemical comparison of oceanic ridge, Hawaiian tholeiitic and Hawaiian alkalic basalts. Earth and Planetary Science Letters 5, 346–352. doi:10.1016/S0012-821X(68)80063-9
Humphreys EM, Niu Y (2009). On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112, 118–136. doi:10.1016/j.lithos.2009.04.038
Ionov DA, Grégoire M, Prikhod’ko VS (1999). Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth and Planetary Science Letters 165, 37–44. doi:10.1016/S0012-821X(98)00253-2
Ionov DA, O’Reilly SY, Ashchepkov IV (1995). Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia. Contributions to Mineralogy and Petrology 122, 174–190. doi:10.1007/s004100050120
Irving AJ (1980). Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. American Journal of Science, 280(A), 389–426. link
Irving AJ, Green DH (2008). Phase relationships of hydrous alkalic magmas at high pressures: production of nepheline hawaiitic to mugearitic liquids by amphiboledominated fractional crystallization within the lithospheric mantle. Journal of Petrology 49 (4), 741–756. doi:10.1093/petrology/15.1.1
Irving AJ, Price, R.C. (1981). Geochemistry and evolution of lherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany and New Zealand. Geochimica et Cosmochimica Acta 45, 1309–1320. doi:10.1016/0016-7037(81)90224-6
Ito G, Mahoney JJ (2005). Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth and Planetary Science Letters 230, 29–46. doi:10.1016/j.epsl.2004.10.035
Ito G, Shen Y, Hirth G, Wolfe CJ (1999). Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth and Planetary Science Letters 165, 81–96. doi:10.1016/S0012-821X(98)00216-7
Ito K, Kennedy GC (1974). The composition of liquids formed by partial melting of eclogites at high temperatures and pressures. Journal of Geology 82:383-392. doi:10.1086/627970
Iwamori H, D. McKenzie, Takahashi E (1995). Melt generation by isentropic mantle upwelling. Earth and Planetary Science Letters, 134(3–4), 253–266. doi:10.1016/0012-821X(95)00122-S
Jackson JM, Dasgupta R (2008). Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth and Planetary Science Letters 276, 175–186. doi:10.1016/j.epsl.2008.09.023
Jackson MD, Ohnenstetter M (1981). Peridotite and gabbroic structures in the Monte Maggiore Massif, Alpine Corsica. Journal of Geology 89:703-719 doi:10.1086/628637
Jahn B, Fan Q, Yang J-J, Henin O (2003). Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints. Lithos 70:243-267. doi:10.1016/s0024-4937(03)00101-4
Jennings ES, Holland TJB (2015). A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. Journal of Petrology, 56(5), 869-892. doi:10.1093/petrology/egv020
Johnson KT, Dick HJB, Schimizu N (1990). Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research 95:2661-2678. doi:10.1029/jb095ib03p02661
Johnson MKT, Kushiro I (1992). Segregation of high pressure partial melts from peridotite using aggregates of diamond: A new experimental approach. Geophysical Research Letters, 19(16), 1703–1706. doi:10.1029/92GL01635
Johnston AD, Draper DS (1992). Near-liquidus phase relations of an anhydrous high-magnesia basalt from the Aleutian Islands: Implications for arc magma genesis and ascent. Journal of Volcanology and Geothermal Research, 52, 27–41. doi:10.1016/0377-0273(92)90131-V
Jones SM, Murton BJ, Fitton JG, White NJ, Maclennan J, Walters RL (2014). A joint geochemical–geophysical record of time-dependent mantle convection south of Iceland. Earth and Planetary Science Letters 386, 86–97. doi:10.1016/j.epsl.2013.09.029
Kamber BS, Collerson KD (2000). Role of ‘hidden’ deeply subducted slabs in mantle depletion. Chemical Geology, 166(3–4), 241–254. doi:10.1016/S0009-2541(99)00218-1
Karato S, Wu P (1993). Rheology of the upper mantle: a synthesis. Science 260, 771–778. doi:10.1126/science.260.5109.771
Katz RF, Spiegelman M, Holtzman B (2006). The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679. doi:10.1038/nature05039
Katz RF, Spiegelman M, Langmuir CH (2003). A new parameterization of hydrous mantle melting. Geochemistry Geophysics Geosystems, 4(9), 1073. doi:10.1029/2002GC000433
Katz RF, Spiegelman M, Langmuir CH (2003). A new parametrization of hydrous mantle melting. Geochemistry Geophysics Geosystems 4. doi:10.1029/2002GC000433
Kay RW, Gast PW (1973). The rare earth content and origin of alkali-rich basalts. The Journal of Geology, 81(6), 653–682. doi:10.1086/627919
Kay RW, Mahlburg Kay S (1993). Delamination and delamination magmatism. Tectonophysics, 219(1–3), 177–189. doi:10.1016/0040-1951(93)90295-U
Kelemen PB (1990). Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. Journal of Petrology 31(1), 51-98. doi:10.1093/petrology/31.1.51
Kelemen PB, Hart SR, Bernstein S (1998). Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164(1–2), 387–406. doi:10.1016/S0012-821X(98)00233-7
Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997). A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London A355, 282–318. doi:10.1098/rsta.1997.0010
Kelemen PB, Joyce DB, Webster JD, Holloway JR (1990). Reaction between ultramafic wall rock and fractionating basaltic magma: Part II, Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150 and 1050 C and 5 kbar. Journal of Petrology 31:99-134 doi:10.1093/petrology/31.1.99
Kelemen PB, Shimizu N, Salters VJM (1995). Extraction of midocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747-753. doi:10.1038/375747a0
Kelley KA, Plank T, Grove TL, Stolper EM (2006). Mantlemelting as a function of water content beneath back-arc basins. Journal of Geophysical Research 111 (B09(208)) doi:10.1029/2005JB003732
Kempton PD, Fitton JG, Saunders AD, Nowell GM, Taylor RN, Hardarson BS, Pearson G (2000). The Iceland plume in space and time: a Sr–Nd–Pb–Hf study of the North Atlantic rifted margin. Earth and Planetary Science Letters 177, 255–271. doi:10.1016/S0012-821X(00)00047-9
Kerr AC, Saunders AD, Tarney J, Berry NH, Hards VL (1995). Depleted mantle plume geochemical signatures: no paradox for plume theories. Geology 23, 843–846. doi:10.1130/0091-7613(1995)023<0843:DMPGSN>2.3.CO;2
Keshav S, Gudfinnsson GH, Sen G, Fei Y (2004). High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth and Planetary Science Letters 223:365-379. doi:10.1016/j.epsl.2004.04.029
Keshav S, Sen G (2001). Majoritic garnets in Hawaiian xenoliths: preliminary results. Geophysical Research Letters, 28(18), 3509–3512. doi:10.1029/2001GL012950
Kimura JI, Kawabata H (2015). Ocean Basalt Simulator version 1 (OBS1): Trace element mass balance in adiabatic melting of a pyroxenite-bearing peridotite. Geochemistry, Geophysics, Geosystems, 16, 267–300. doi:10.1002/2014GC005606
Kinzler RJ (1997). Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to midocean ridge basalt petrogenesis. Journal of Geophysical Research 102:853-874. doi:10.1029/96JB00988
Kinzler RJ, Grove TL (1992). Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. Journal of Geophysical Research 97: 6885–6906. doi:10.1029/91JB02840
Kinzler RJ, Grove TL (1992). Primary magmas of mid-ocean ridge basalts 2. Applications. Journal of Geophysical Research 97:6907-6926. doi:10.1029/91JB02841
Kinzler RJ, Grove TL (1993). Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. Journal of Geophysical Research 98:22339-22347. doi:10.1029/93JB02164
Klein EM, Langmuir CH (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research 92:8089-8115. doi:10.1029/JB092iB08p08089
Klein EM, Langmuir CH (1989). Local versus global variations in ocean ridge basalt composition: A reply. Journal of Geophysical Research: Solid Earth, 94(B4), 4241–4252. doi:10.1029/JB094iB04p04241
Kogiso T, Hirose K, Takahashi E (1998). Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth and Planetary Science Letters 162:45-61. doi:10.1016/S0012-821X(98)00156-3
Kogiso T, Hirschmann MM (2001). Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contributions to Mineralogy and Petrology, 142(3), 347-360. doi:10.1007/s004100100295
Kogiso T, Hirschmann MM (2006). Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth and Planetary Science Letters 249:188-199. doi:10.1016/j.epsl.2006.07.016
Kogiso T, Hirschmann MM, Frost DJ (2003). High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters 216(4), 603-617. doi:10.1016/s0012-821x(03)00538-7
Kogiso T, Hirschmann MM, Pertermann M (2004). High-pressure partial melting of mafic lithologies in the mantle. Journal of Petrology 45(12), 2407-2422. doi:10.1093/petrology/egh057
Kogiso T, Hirschmann MM, Reiners PW (2004). Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochimica et Cosmochimica Acta 68:345-360. doi:10.1016/s0016-7037(03)00419-8
Kohlstedt DL (1991). Structure, rheology and permeability of partially molten rocks at low melt fractions. In: Phipps Morgan J, Blackman DK & Sinton JM (eds) Mantle Flow and Melt Generation at Mid-ocean Ridges. American Geophysical Union, Geophysical Monographs 71, 103-121. doi:10.1029/gm071p0103
Kokfelt T, Hoernle K, Hauff F, Fiebig J, Werner R, Garbe-Schönberg D (2006). Combined trace element and Pb–Nd–Sr–O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. Journal of Petrology 47, 1705–1749. doi:10.1093/petrology/egl025
Kokfelt TF, Hoernle K, Hauff F (2003). Upwelling and melting of the Iceland plume from radial variation of 238U–230Th disequilibria in postglacial volcanic rocks. Earth and Planetary Science Letters 214, 167–186. doi:10.1016/S0012-821X(03)00306-6
Koornneef JM, Stracke A, Bourdon B, Grönvold K (2012). The influence of source heterogeneity on the U–Th–Pa–Ra disequilibria in post-glacial tholeiites from Iceland. Geochimica et Cosmochimica Acta 87, 243–266. doi:10.1016/j.gca.2012.03.041
Koornneef JM, Stracke A, Bourdon B, Meier MA, Jochum KP, Stoll B, Grönvold K (2012). Melting of a two-component source beneath Iceland. Journal of Petrology 53, 127–157. doi:10.1093/petrology/egr059
Korenaga J (2013). Initiation and evolution of plate tectonics on Earth: Theories and observations. Annual Review of Earth and Planetary Sciences, 41, 117–151. doi:10.1146/annurev-earth-050212-124208
Korenaga J, Kelemen PB (2000). Major element heterogeneity in the mantle source of the North Atlantic igneous province. Earth and Planetary Science Letters 184, 251–268. doi:10.1016/S0012-821X(00)00308-3
Kornprobst J (1970). Les péridotites et les pyroxenolites du massif ultrabasique des Beni Bouchera: une etude experimentale entre 1100 et 1550 C sous 15 à 30 kilobars de pression sèche. Contributions to Mineralogy and Petrology 29:290-309. doi:10.1007/bf00371277
Kornprobst J, Piboule M, Roden M, Tabit A (1990). Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): Original plagioclase-rich gabbros recrystallized at depth within the mantle? Journal of Petrology, 31(3), 717–745. doi:10.1093/petrology/31.3.717
Kubo K (2002). Dunite formation processes in highly depleted peridotite: Case study of the Iwanaidake, Hokkaido, Japan. Journal of Petrology 43:423-448. doi:10.1093/petrology/43.3.423
Kumar N, Reisberg L, Zindler A (1996). A major and trace element and strontium, neodymium, and osmium isotopic study of a thick pyroxenite layer from the Beni Bousera ultramafic complex of northern Morocco. Geochimica et Cosmochimica Acta 60:1429-1444. doi:10.1016/0016-7037(95)00443-2
Kuno H, Aoki K-I (1970). Chemistry of ultramafic nodules and their bearing on the origin of basaltic magmas. Phys. Earth Planet. Int. 3:273-301. doi:10.1016/0031-9201(70)90065-8
Kushiro I (1969). The system forsterite–diopside–silica with and without water at high pressures. American Journal of Science 267 (A), 269–294. link
Kushiro I (1969). Clinopyroxene solid solutions fromed by reactions between diopside and plagioclase at high pressures. Mineralogical Society of America, Special Paper, 2, 179–191. link
Kushiro I (1972). Effect of water on the composition of magmas formed at high pressures. Journal of Petrology 13, 311–334. doi:10.1093/petrology/13.2.311
Kushiro I (1975). On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. American Journal of Science 275, 411–431. doi:10.2475/ajs.275.4.411
Kushiro I (1996). Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Basu A, Hart S (Eds.), Earth Processes: Reading the Isotopic Code: Geophysical Monogaph:vol. 95:p. 437. doi:10.1029/GM095p0109
Kushiro I (1996). Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Earth Processes: Reading the Isotopic Code. Geophysical Monograph, vol. 95, pp. 109–122. doi:10.1029/GM095p0109
Kushiro I, Yoder HS (1966). Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation. Journal of Petrology, 7, 337–362. doi:10.1093/petrology/7.3.337
Kushiro I, Yoder HS (1974). Formation of eclogite from garnet lherzolite: liquidus relations in a portion of the system MgSiO3–CaSiO3–Al2O3 at high pressures. Carnegie Institution of Washington, Yearbook, 73, 266–269. link
Kyle PR, Moore JA, Thirlwall MF (1992). Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. Journal of Petrology 33, 849–875. doi:10.1093/petrology/33.4.849
Lambart S, Baker MB, Stolper EM (2016). The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5GPa. Journal of Geophysical Research: Solid Earth 121. doi:10.1002/2015JB012762.
Lambart S, Laporte D, Provost A, Schiano P (2012). Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamical and experimental constraints. Journal of Petrology 53 (3), 451–476. doi:10.1093/petrology/egr068
Lambart S, Laporte D, Schiano P (2009). An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: implications for the major-element composition of mid-ocean ridge basalts. Earth and Planetary Science Letters 288, 335-347. doi:10.1016/j.epsl.2009.09.038
Lambart S, Laporte D, Schiano P (2009). An experimental study of focused magma transport and basalt-peridotite interactionsbeneathmid-ocean ridges: implications for the generation of primitive MORB composition. Contributions to Mineralogy and Petrology 157:429-451. doi:10.1007/s00410-008-0344-7
Lambart S, Laporte D, Schiano P (2013). Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints. Lithos 160–161, 14–36. doi:10.1016/j.lithos.2012.11.018
Langmuir CH, Klein EM, Plank T (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Geophysical Monograph Series 71:183-280 doi:10.1029/GM071p0183
Laporte D, Lambart S, Schiano P, Ottolini L (2014). Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth and Planetary Science Letters, 404, 319–331. doi:10.1016/j.epsl.2014.08.002
Laporte D, Toplis MJ, Seyler M, Devidal JL (2004). A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contributions to Mineralogy and Petrology 146:463-484. doi:10.1007/s00410-003-0509-3
Laske G, Phipp Morgan J, Orcutt JA (1999). First results from the Hawaiian swell experiment. Geophysical Research Letters 26, 3397–3400. doi:10.1029/1999GL005401
Lassiter JC, Hauri EH, Reiners PW, Garcia MO (2000). Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth and Planetary Science Letters, 178(3–4), 269–284. doi:10.1016/S0012-821X(00)00084-4
Laubier M, Grove TL, Langmuir CH (2014). Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters 392, 265–278. doi:10.1016/j.epsl.2014.01.053
Laubier M, Schiano P, Doucelance R, Ottolini L, Laporte D (2007). Olivine-hosted melt inclusions and melting processes beneath the famous zone (mid-atlantic ridge). Chemical Geology 240:129-150. doi:10.1016/j.chemgeo.2007.02.002
Le Bas MJ (1989). Nephelinitic and basanitic rocks. Journal of Petrology 30, 1299–1312. doi:10.1093/petrology/30.5.1299
Le Bas MJ, Le Maitre RW, Streckeisen A; Zanettin B (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745-750. doi:10.1093/petrology/27.3.745
Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, pp 236 isbn:9780521662154
Le Roux PJ, Le Roex AP, Schilling JG (2002). MORB melting processes beneath the southern mid-Atlantic ridge (40-55 degrees S): a role for mantle plume-derived pyroxenite. Contributions to Mineralogy and Petrology 144:206-229. doi:10.1007/s00410-002-0376-3
Lee CTA (2014). Physics and chemistry of deep continental crust recycling. in Treatise on Geochemistry, 2nd ed., vol. 4 pp. 423–456 doi:10.1016/B978-0-08-095975-7.00314-4
Lee CTA, Luffi P, Plank T, Dalton H, Leeman WP (2009). Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters 279, 20–33. doi:10.1016/j.epsl.2008.12.020
Lee CTA., Cheng X, Horodyskyj U (2006). The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology 151:22-242. doi:10.1007/s00410-005-0056-1
Leeman WP, Lindstrom DJ (1978). Partitioning of Ni2+ between basaltic and synthetic melts and olivines—an experimental study. Geochimica et Cosmochimica Acta 42, 801–816. doi:10.1016/0016-7037(78)90094-7
Lenoir X, Garrido CJ, Bodinier JL, Dautria JM, Gervilla F (2001). The recrystallization front of the Ronda peridotite: evidence for melting and thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin. Journal of Petrology 42(1), 141-158. doi:10.1093/petrology/42.1.141
Liu X, O'Neill HCS (2004). The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2–Cr2O3 at 1.1 GPa. Journal of Petrology 45 (11), 2261–2286. doi:10.1093/petrology/egh055
Liu X, O'Neill HCS (2007). Effects of P2O5 and TiO2 on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2 at 1.1 GPa. The Canadian Mineralogist 45, 649–655. doi:10.2113/gscanmin.45.3.649
Liu X, O'Neill HSC (2004). Partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2±K2O at 1·1 GPa. Journal of Petrology 45 (7), 1339–1368. doi:10.1093/petrology/egh021
Liu X, Presnall DC (2000). Liquidus phase relations in the system CaO–MgO–Al2O3–SiO2 at 2.0 GPa: applications to basalt formation, eclogites, and igneous sapphirine. Journal of Petrology 41, 3–20. doi:10.1093/petrology/41.1.3
Liu Y, Gao S, Lee CTA, Hu S, Liu X, Yuan H (2005). Melt-peridotite interactions: links between garnet pyroxenite and high-Mg signature of continental crust. Earth and Planetary Science Letters 234:39-57. doi:10.1016/j.epsl.2005.02.034
Longhi J (2002). Some phase equilibrium systematics of lherzolite melting: I. Geochemistry, Geophysics, Geosystems, 3(3), 1–33. doi:10.1029/2001GC000204
Longhi J (2005). Temporal stability and pressure calibration of barium carbonate and talc/pyrex pressure media in a piston-cylinder apparatus. American Mineralogist, 90(1), 206–218. doi:10.2138/am.2005.1348
Lundstrom CC, Gill J, Williams Q (2000). A geochemically consistent hypothesis for MORB generation. Chemical Geology 162(2), 105-126. doi:10.1016/s0009-2541(99)00122-9
Luth WC, Ingamells CO (1965). Gel preparation of starting materials for hydrothermal experimentation. American Mineralogist 50, 255-258. link
Maaløe S (2004). The PT-phase relations of an MgO-rich Hawaiian tholeiite: the compositions of primary Hawaiian tholeiites. Contributions to Mineralogy and Petrology, 148(2), 236–246. doi:10.1007/s00410-004-0601-3
Maaløe S, James D, Smedley P, Petersen S, Garmann LB (1992). The Koloa Volcanic Suite of Kauai, Hawaii. Journal of Petrology 33 (4), 761–784. doi:10.1093/petrology/33.4.761
Maaløe S, Wyllie PJ (1979). The join grossularite–pyrope at 30 kb and its petrological significance. American Journal of Science 279, 288–301. doi:10.2475/ajs.279.3.288
Macdonald GA, Katsura T (1964). Chemical composition of Hawaiian lavas. Journal of Petrology 5 (1), 82–133. doi:10.1093/petrology/5.1.82
Maclennan J (2008). Concurrent mixing and cooling of melts under Iceland. Journal of Petrology 49, 1931–1953. doi:10.1093/petrology/egn052
Maclennan J (2008). Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochimica et Cosmochimica Acta 72, 4159–4176. doi:10.1016/j.gca.2008.05.034
Maclennan J, McKenzie D, Grönvold K (2001). Plume-driven upwelling under central Iceland. Earth and Planetary Science Letters 194, 67–82. doi:10.1016/S0012-821X(01)00553-2
Maclennan J, McKenzie D, Grönvold K, Slater L (2001). Crustal accretion under northern Iceland. Earth and Planetary Science Letters 191, 295–310. doi:10.1016/S0012-821X(01)00420-4
Maclennan J, McKenzie D, Hilton F, Gronvöld K, Shimizu N (2003). Geochemical variability in a single flow from northern Iceland. Journal of Geophysical Research 108. doi:10.1029/2000JB000142
Mallik A, Dasgupta R (2012). Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth and Planetary Science Letters 329–330, 97–108. doi:10.1016/j.epsl.2012.02.007
Mallik A, Dasgupta R (2013). Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. Journal of Petrology, 54(11), 2267–2300. doi:10.1093/petrology/egt047
Marchesi C, Garrido CJ, Bosch D, Bodinier JL , Gervilla F, Hidas K (2013). Mantle refertilization by melts of crustal-derived garnet pyroxenite: Evidence from the Ronda peridotite massif, southern Spain. Earth and Planetary Science Letters, 362(0), 66–75. doi:10.1016/j.epsl.2012.11.047
Martin AP, Price RC, Cooper AF, McCammon CA (2015). Petrogenesis of the rifted southern Victoria Land lithospheric mantle, Antarctica, inferred from petrography, geochemistry, thermobarometry and oxybarometry of peridotite and pyroxenite xenoliths from the Mount Morning eruptive centre. Journal of Petrology, 56(1), 193–226. doi:10.1093/petrology/egu075
Matthews S, Shorttle O, Maclennan, (2016). The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry. Geochemistry, Geophysics, Geosystems 17, 4725–4752. doi:10.1002/2016GC006497
Matzen AK, Baker MB, Beckett JR, Stolper EM (2013). The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. Journal of Petrology 54, 2521–2545. doi:10.1093/petrology/egt055
Matzen AK, Baker MB, Beckett JR, Wood BJ, Stolper EM (2017). The effect of liquid composition on the partitioning of Ni between olivine and silicate melt. Contributions to Mineralogy and Petrology 172. doi:10.1007/s00410-016-1319-8.
Maumus J, Laporte D, Schiano P (2004). Dihedral angle measurements and infiltration property of SiO2-rich melts in mantle peridotite assemblages. Contributions to Mineralogy and Petrology 148, 1–12. doi:10.1007/s00410-004-0595-x
Mazzucchelli M, Rivalenti G, Brunelli D, Zanetti A, Boari E (2009). Formation of highly refractory dunite by focused percolation of pyroxenite-derived melt in the Balmuccia peridotite massif (Italy). Journal of Petrology 50 (7), 1205–1233. doi:10.1093/petrology/egn053
McCormick TC (1986). Crystal-chemical aspects of non-stoichiometric pyroxenes. American Mineralogist, 71, 1434–1440. link
McDonough WF (1991). Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philisophical Transactions of the Royal Society London. 335, 407-418. link
McDonough WF, Sun SS (1995). The composition of the Earth. Chem. Geol. 120, 223–253. link
McKenzie D (1989). Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters 95, 53–72. link
McKenzie D, Bickle MJ (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29:625-697 doi:10.1093/petrology/29.3.625
McKenzie D, O’Nions RK (1991). Partial melt distributions from inversion of rare Earth element concentrations. Journal of Petrology 32:1021-1091 doi:10.1093/petrology/32.5.1021
Médard E, Grove T (2008). The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contributions to Mineralogy and Petrology, 155(4), 417–432. link
Médard E, McCammon CA, Barr JA, Grove TL (2008). Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. American Mineralogist, 93, 1838–1844. link
Médard E, Schmidt MW, Schiano P, Ottolini L (2006). Melting of amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. Journal of Petrology 47:491-504. doi:10.1093/petrology/egi083
Melcher F, Meisel T, Puhl J, Koller F (2002). Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints fromgeochemistry. Lithos 65:69-112. doi:10.1016/s0024-4937(02)00161-5
Melson WG, O'Hearn T (2003). Smithsonian Volcanic Glass File. PetDB database link
Menke W (1999). Crustal isostasy indicates anomalous densities beneath Iceland. Geophys. Res. Lett. 26, 1215–1218. doi:10.1029/1999GL900202
Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere–lithosphere interaction. In: Mantle Metasomatism. Academic Press, pp. 313–361. isbn:9780124910805
Michael PJ (1988). The concentration, behaviour and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochimica et Cosmochimica Acta 52, 555–566. doi:10.1016/0016-7037(88)90110-X
Michael PJ (1995). Regionally distinctives sources of depleted MORB: evidence from trace elements and H2O. Earth and Planetary Science Letters 131:301-320. doi:10.1016/0012-821x(95)00023-6
Michael PJ, Langmuir CH, Dick HJB, Snow JE, Goldstein SL, Graham DW, Lehnert K, Kurras G, Jokat W, Mühe R, Edmonds HN (2003). Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961. doi:10.1038/nature01704
Michael PJ, Schilling JG (1989). Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochimica et Cosmochimica Acta 53:3131-3143. doi:10.1016/0016-7037(89)90094-x
Milholland CS, Presnall DC (1998). Liquidus phase relations in the CaO–MgO–Al2O3–SiO2 system at 3.0 GPa: the aluminous pyroxene thermal divide and high-pressure fractionation of picritic and komatiitic magmas. Journal of Petrology 39 (1), 3–27. doi:10.1093/petroj/39.1.3
Moine BN, Cottin J-Y, Sheppard SMF, Grégoire M, O'Reilly SY, Giret A (2000). Incompatible trace element and isotopic (D/H) characteristics of amphibole- and phlogopite-bearing ultramafic to mafic xenoliths from Kerguelen Islands (TAAF, South Indian Ocean). European Journal of Mineralogy 12 (4), 761–777. doi:10.1127/0935-1221/2000/0012-0761
Moore JG, Clague D (1992). Volcano growth and evolution of island of Hawaii. Geological Society of America Bulletin 104, 1471–1494. doi:10.1130/0016-7606(1992)104<1471:VGAEOT>2.3.CO;2
Morgan WJ (1971). Convection plumes in the lower mantle. Nature 230, 42–43. doi:10.1038/230042a0
Morgan Z, Liang Y (2003). An experimental study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth and Planetary Science Letters 214:59-74. doi:10.1016/S0012-821X(03)00375-3
Morgan Z, Liang Y (2005). An experimental study of the kinetics of lhezolite reactive dissolution with applications to dunite dike formation. Contributions to Mineralogy and Petrology 150:369-385. doi:10.1007/s00410-005-0033-8
Mysen BO, Richet P (2005) Melt and glass structure. Basic concepts. In: Developments in Geochemistry, Silicate Glasses and Melts: Properties and Structure. vol. 10, pp. 101–129. isbn:9780444520111
Mysen BO, Ryerson FJ, Virgo D (1980). The influence of TiO2 on the structure and derivative properties of silicate melts. American Mineralogist 65, 1150–1165. link
Navon O, Stolper EM (1987). Geochemical consequences of melt percolation-the upper mantle as a chromatographic column. Journal of Geology 95:285-307 doi:10.1086/629131
Neumann E-R, Marti J, Mitjavila J, Wulff-Pedersen E (1999). Origin and implications of mafic xenoliths associated with Cenozoic extension-related volcanism in the Valencia Trough, NE Spain. Mineralogy and Petrology 65, 113–139. doi:10.1007/BF01161579
Neumann ER, Wulff-Pedersen E (1997). The origin of highly silicic glass in mantle xenoliths from the Canary Islands. Journal of Petrology 38, 1513–1539. doi:10.1093/petroj/38.11.1513
Nicholls IA, Ringwood AE (1973). Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in the island arc environment. Journal of Geology 81, 285–306. doi:10.1086/627871
Nicholson H, Condomines M, Fitton JG, Fallick AE, Gronvöld K, Rogers G (1991). Geochemical and isotopic evidence for crustal assimilation beneath Krafla, Iceland. Journal of Petrology 32, 1005–1020. doi:10.1093/petrology/32.5.1005
Nielsen RL (1988). A model for the simulation of the combined major and trace element liquid lines of descent. Geochimica et Cosmochimica Acta 52, 27–38. doi:10.1016/0016-7037(88)90053-1
Niu Y (1997). Mantle melting and melt extraction processes beneath Ocean Ridges: evidence from abyssal peridotites. Journal of Petrology 38:1047-1074. doi:10.1093/petrology/38.8.1047
Niu Y (2008). The origin of alkaline lavas. Science, 320(5878), 883–884. doi:10.1126/science.1158378
Niu Y, Batiza R (1991). An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting. Journal of Geophysical Research: Solid Earth, 96(B13), 21753–21777. doi:10.1029/91JB01933
Niu Y, Batiza R (1997). Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters 148:471-483. doi:10.1016/s0012-821x(97)00197-0
Niu Y, Collerson KD, Batiza R, Wendt IJ, Regelous M (1999). Origin of enriched-type Mid-Ocean Ridge Basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20?N. Journal of Geophysical Research 104:7067-7087. doi:10.1029/1998jb900037
Niu Y, Hékinian R (1997). Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326-329. doi:10.1038/385326a0
Niu Y, Langmuir CH, Kinzler RJ (1997). The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters 152:251-265. doi:10.1016/S0012-821X(97)00119-2
Niu Y, Regelous M, Wendt IJ, Batiza R, O'Hara MJ (2002). Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters 199:327-345. doi:10.1016/s0012-821x(02)00591-5
Niu YL, Wilson M, Humphreys EM, O'Hara MJ (2011). The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications. Journal of Petrology 52 (7–8), 1443–1468. doi:10.1093/petrology/egr030
O’Hara MJ (1965). Primary magmas and the origin of basalts. Scottish Journal of Geology 1:19-40 doi:10.1144/sjg01010019
O’Hara MJ (1968). Are ocean floor basalts primary magma? Nature 220:683-686. doi:10.1038/220683a0
O’Hara MJ (1977). Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. Nature 266:503-507. doi:10.1038/266503a0
O’Hara MJ, Mathews RE (1981). Geochemical evolution in a advancing periodically replenished, periodically tapped, continuously fractionated magma chamber. Journal of the Geological Society 138:237-277. doi:10.1144/gsjgs.138.3.0237
O'Hara MJ (1969). The relationship between liquid and crystals in univariant equilibria of four component systems, their application to the origin and melting of ultramafic rocks and refractories. Progress in Experimental Petrology 1. Report of Research Supported by N.E.R.C, pp. 114–120. link
O'Hara MJ (1969). Quaternary invariant equilibria involving liquid; their application to the origin of mafic and ultramafic nodules in igneous rocks. Progress in Experimental Petrology 1. Report of Research Supported by N.E.R.C, pp. 120–128. link
O'Hara MJ (1972). Data reduction and projection schemes for complex compositions Progress in experimental petrology 3. Report of Research Supported by N.E.R.C., pp. 103–126. link
O'Hara MJ (1976). Data reduction and projection schemes for complex compositions. Progress in Experimental Petrology 6. Report of Research Supported by N.E.R.C, pp. 103–126. link
O'Hara MJ, Yoder HS (1963). Partial melting of the mantle. Carnegie Institution of Washington, Yearbook, 62, pp. 66–71. doi:66–71.
O'Hara MJ, Yoder HS (1967). Formation and fractionation of basic magmas at high pressures. Scottish Journal of Geology 3, 67–117. doi:10.1144/sjg03010067
Orejanaa D, Villaseca C, Paterson BA (2006). Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish Central System. Lithos 86, 167–196. doi:10.1016/j.lithos.2005.03.014
Ottolini L, Bottazzi P, Zanetti A, Vannucci R (1995). Determination of hydrogen in silicates by secondary ion mass spectrometry. Analyst 120, 1309–1313. doi:10.1039/AN9952001309
Ottolini L, Cámara F, Hawthorne FC, Stirling J (2002). SIMS matrix effects in the analysis of light elements in silicate minerals: comparison with SREF and EMPA data. American Mineralogist 87, 1477–1485. doi:10.2138/am-2002-1025
Ottolini L, Hawthorne FC (2001). SIMS ionization of hydrogen in silicates: a case study of kornerupine. Journal of Analytical Atomic Spectrometry 6, 1266–1270. doi:10.1039/B105674N
Parman SW, Grove TL (2004). Harzburgite melting with and without H2O: experimental data and predictive modeling. Journal of Geophysical Research 109 (B2). doi:10.1029/2003jb002566.
Pearson DG, Canil D, Shirey SB (2003). Mantle samples included in volcanic rocks: Xenoliths and diamonds. In Treatise on Geochemistry, vol. 2: The Mantle and Core, pp. 171-275. doi:10.1016/B0-08-043751-6/02005-3
Pearson DG, Davies GR, Nixon PH (1993) . Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. Journal of Petrology 34(1), 125-172. doi:10.1093/petrology/34.1.125
Pearson DG, Davies GR, Nixon PH, Milledge HJ (1989). Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurences. Nature, 338, 60–62. doi:10.1038/338060a0
Pearson DG, Nixon PH (1996). Diamonds in young orogenic belts: graphitised diamonds from Beni Bousera N Morocoo, a comparison with kimberlite-derived diamond occurences and implications for diamond genesis and exploration. Africa Geoscience Review 3(2):295-316. link
Peate DW, Baker JA, Jakobsson SP, Waight TE, Kent AJR, Grassineau NV, Skovgaard AC (2009). Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment. Contributions to Mineralogy and Petrology 157, 359–382. doi:10.1007/s00410-008-0339-4
Peate DW, Breddam K, Baker JA, Kurz MD, Barker AK, Prestvik T, Grassineau N, Skovgaard AC (2010). Compositional characteristics and spatial distribution of enriched Icelandic mantle components. Journal of Petrology, 51(7), 1447–1475. doi:10.1093/petrology/egq025
Peltier R (1996). Mantle viscosity and ice-age ice sheet topography. Science 273, 1359–1364. doi:10.1126/science.273.5280.1359
Pertermann M, Hirschmann MM (2003). Anhydrous partial melting experiments on a MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elemens at 2-3 GPa. Journal of Petrology 44:2173-2201. doi:10.1093/petrology/egg074
Pertermann M, Hirschmann MM (2003). Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research 108(B2):2125. doi:10.1029/2000JB000118
Peslier AH, Francis D, Ludden J (2002). The lithospheric mantle beneath continental margins: Melting and melt-rock reaction in Canadian Cordillera xenoliths. Journal of Petrology, 43(11), 2013–2047. doi:10.1093/petrology/43.11.2013
Phipps Morgan J (2001). Thermodynamics of pressure release melting of a veined plum pudding mantle. doi:10.1029/2000GC000049.
Piccardo GB, Vissers RL M. (2007). The pre-oceanic evolution of the Erro-Tobbio peridotite (Voltri Massif, Ligurian Alps, Italy). Journal of Geodynamics 43(4-5), 417-449. doi:10.1016/j.jog.2006.11.001
Pickering-Witter J, Johnston, A.D. (2000). The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contributions to Mineralogy and Petrology 140, 190–211. doi:10.1007/s004100000183
Pietruszka AJ, Norman MD, Garcia MO, Marske JP, Burns DH (2013). Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of altered oceanic crust. Earth and Planetary Science Letters 361, 298–309. doi:10.1016/j.epsl.2012.10.030
Pilet S, Baker MB, Müntener O, Stolper EM (2011). Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. Journal of Petrology 52 (7–8), 1415–1442. doi:10.1093/petrology/egr007
Pilet S, Baker MB, Stolper EM (2008). Metasomatized lithosphere and the origin of alkaline lavas. Science 320(5878), 916-919. doi:10.1126/science.1156563
Pilet S, Hernandez J, Sylvester P, Poujol M (2005). The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters 236, 148–166. doi:10.1016/j.epsl.2005.05.004
Pilet S, Hernandez J, Villemant B (2002). Evidence for high silicic melt circulation and metasomatic events in the mantle beneath alkaline provinces: the Na–Feaugitic green-core pyroxenes in the Tertiary alkali basalts of the Cantal massif (French Massif Central). Mineralogy and Petrology 76, 39–62. doi:10.1007/s007100200031
Pilet S, Ulmer P, Villiger S (2010). Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contributions to Mineralogy and Petrology 159 (5), 621–643. doi:10.1007/s00410-009-0445-y
Pin C, Monchoux P, Paquette JL, Azambre B, Wang, Ru Cheng, Martin RF (2006). Igneous albitite dikes in orogenic lherzolites, Western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. II. Geochemical and petrogenetic considerations. The Canadian Mineralogist 44, 843–856. doi:10.2113/gscanmin.44.4.843
Plank T, Langmuir CH (1992). Effects of the melting regime on the composition of the oceanic crust. Journal of Geophysical Research 97 (B13), 19749–19770. doi:10.1029/92JB01769
Polvé M, Allègre CJ (1980). Orogenic lherzolite complexes studied by 87Rb-87Sr: a clue to understand the mantle convection processes. Earth and Planetary Science Letters 51, 71-93. doi:10.1016/0012-821x(80)90258-7
Porreca C, Selverstone J, Samuels K (2006). Pyroxenite xenoliths from the Rio Puerco volcanic field, New Mexico: melt metasomatism at the margin of the Rio Grande rift. Geosphere 2:333-351. doi:10.1130/ges00058.1
Presnall DC, Dixon SA, Dixon JR, O'Donnell TH, Brenner NL, Schrock RL, Dycus DW (1978). Liquidus phase relations on the join diopside-forsterite-anorthite at 1 atm to 20 kbar; their bearing on the generation and crystallization of basaltic magma. Contributions to Mineralogy and Petrology 66:203-220. doi:10.1007/bf00372159
Presnall DC, Gudfinnson GH, Walter MJ (2002). Generation of Mid-Ocean Ridge Basalts at pressure from 1 to 7 GPa. Geochimica et Cosmochimica Acta 66:2073-2090. doi:10.1016/s0016-7037(02)00890-6
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran, second edition. Cambridge University Press. isbn:9780521574402
Price RC, Cooper AF, Woodhead JD, Cartwright I (2003). Phonolitic diatremes within the Dunedin volcano, South Island, New Zealand. Journal of Petrology 44, 2053–2080. doi:10.1093/petrology/egg070
Prinzhofer A, Lewin E, Allègre CJ (1989). Stochastic melting of the marble cake mantle: evidence from local study of the East Pacific Rise at 12°50’ N. Earth and Planetary Science Letters 92, 189–206. doi:10.1016/0012-821X(89)90046-0
Prytulak J, Elliott T (2007). TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters 263, 388–403. doi:10.1016/j.epsl.2007.09.015
Putirka K, Mikaelian H, Ryerson F, Shaw H (2003). New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88, 1542-1554. doi:10.2138/am-2003-1017$
Putirka K, Ryerson FJ, Perfit M, Ridley WI (2011). Mineralogy and composition of the oceanic mantle. Journal of Petrology 52, 279–313. doi:10.1093/petrology/egq080
Putirka KD (1999). Clinopyroxene + liquid equilibrium to 100 kbar and 2450 K. Contributions to Mineralogy and Petrology 135, 151-163. doi:10.1007/s004100050503
Putirka KD (2005). Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6(5), Q05L08. doi:10.1029/2005GC000915
Putirka KD (2008). Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69:61-120. doi:10.2138/rmg.2008.69.3
Putirka KD (2008). Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36:283-286. doi:10.1130/g24615a.1
Putirka KD, Johnson M, Kinzler RJ, Walker D (1996). Thermobarometry of mafic igneous rocks based on clinopyroxene- liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology 123, 92-108. doi:10.1007/s004100050145
Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007). Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 241:177-206. doi:10.1016/j.chemgeo.2007.01.014
Putirka KD, Ryerson FJ, Mikaelian H (2003). New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene þ liquid equilibria. American Mineralogist 88, 1542-1554. link
Quick JE (1981). The origin and significance of large, tabular dunite bodies in the Trinity peridotite, northern California. Contributions to Mineralogy and Petrology 78:413-422. doi:10.1007/BF00375203
Rampone E, Romairone A, Hofmann AW (2004). Contrasting bulk and mineral chemistry in depleted mantle peridotites: evidence for reactive porous flow. Earth and Planetary Science Letters 218:491-506. doi:10.1016/S0012-821X(03)00679-4
Rapp RP, Shimizu N, Norman MD, Applegate GS (1999). Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160(4), 335–356. doi:10.1016/S0009-2541(99)00106-0
Reisberg LC, Allègre CJ, Luck JM (1991). The Re-Os systematic of Ronda ultramafic complex of southern Spain. Earth and Planetary Science Letters 105, 196-213. doi:10.1016/0012-821x(91)90131-z
Remaïdi M (1993). Etude pétrologique et géochimique d’une association de péridotites réfractaires-pyroxénites dans le Massif de Ronda (Espagne). Ph.D. Thesis, Université Montpellier II, 437 p. link
Renner J, Evans B, Hirth G (2002). Grain growth and inclusion formation in partially molten carbonate rocks. Contributions to Mineralogy and Petrology 142, 501–514. doi:10.1007/s00410-001-0310-0
Rhodes JM, Dungan MA, Blanchard DP, Long PE (1979). Magma mixing at mid-ocean ridges: evidence from basalts drilled near 228N on the Mid-Atlantic Ridge. Tectonophysics 55, 35-61. doi:10.1016/0040-1951(79)90334-2
Rickers F, Fitchner A, Trampert J (2013). The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth and Planetary Science Letters 367, 39–51. doi:10.1016/j.epsl.2013.02.022
Riley TR, Bailey DK, Harmer RE, Liebsch H, Lloyd FE, Palmer MR (1999). Isotopic and geochemical investigation of a carbonatite–syenite–phonolite diatreme, West Eifel (Germany). Mineralogical Magazine 63, 615–631. doi:10.1180/002646199548736
Ringwood AE (1962). A model for the upper mantle. Journal of Geophysical Research 67:2, 857–867. doi:10.1029/JZ067i002p00857
Robinson JAC, Wood BJ (1998). The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters 164, 277–284. doi:10.1016/S0012-821X(98)00213-1
Robinson JAC, Wood BJ, Blundy JD (1998). The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth and Planetary Science Letters 155:97-111. doi:10.1016/s0012-821x(97)00162-3
Rosenthal A, Yaxley GM, Green DH, Hermann J, Kovacs I, Spandler C (2014). Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle. Scientific Reports, 4, 6099. doi:10.1038/srep06099
Rudge JF, Maclennan J, Stracke A (2013). The geochemical consequences of mixing melts from a heterogeneous mantle. Geochimica et Cosmochimica Acta 114, 112–143. doi:10.1016/j.gca.2013.03.042
Rudnick RL, Barth M, Horn I, McDonough WF (2000). Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451), 278–281. doi:10.1126/science.287.5451.278
Ryerson FJ (1985). Oxide solution mechanisms in silicate melts: systematic variations in the activity coefficient of SiO2. Geochimica et Cosmochimica Acta 49, 637–649. doi:10.1016/0016-7037(85)90159-0
Saal AE, Hauri E, Langmuir CH, Perfit MR (2002). Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature 419, 451–455. doi:10.1038/nature01073
Salters MVJ, Dick HJB (2002). Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature, 418(6893), 68–72. doi:10.1038/nature00798
Salters VJM, Dick HJB (2002). Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418 (6893), 68–72. doi:10.1038/nature00798
Salters VJM, Mallick S, Hart SR, Langmuir CE, Stracke A (2011). Domains of depleted mantle: new evidence from hafnium and neodymium isotopes. Geochemistry Geophysics Geosystems 12. doi:10.1029/2011GC003617
Salters VJM, Stracke A (2004). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, Q05004. doi:10.1029/2003GC000597.
Santos JF, Schärer U, Gil Ibarguchui JI, Girardeau J (2002) . Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb-Sr-Nd isotope data. Journal of Petrology 43:17-43. doi:10.1093/petrology/43.1.17
Schiano P (2003). Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Science Reviews 63:121-144. doi:10.1016/s0012-8252(03)00034-5
Schiano P, Birck JL, Allègre CJ (1997). Osmium–strontium–neodymium–lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth and Planetary Science Letters 150 (3–4), 363–379. doi:10.1016/S0012-821X(97)00098-8
Schiano P, Bourdon B (1999). On the preservation of mantle information in ultramafic nodules: glass inclusions within minerals versus interstitial glasses. Earth and Planetary Science Letters 169, 173–188. doi:10.1016/S0012-821X(99)00074-6
Schiano P, Bourdon B, Clocchiatti R, Massare D, Varela ME, Bottinga Y (1998). Low-degree partial melting trends recorded in upper mantle minerals. Earth and Planetary Science Letters 160, 537–550. doi:10.1016/S0012-821X(98)00109-5
Schiano P, Clocchiatti R (1994). Worldwide occurrence of silica-rich melts in subcontinental and sub-oceanic mantle minerals. Nature 368, 621–624. doi:10.1038/368621a0
Schiano P, Eiler JM, Hutcheon ID, Stolper EM (2000). Primitive CaO-rich, silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochemistry, Geophysics, Geosystems, 1(5), 1018. doi:10.1029/1999GC000032
Schiano P, Provost A, Clocchiatti R, Faure F (2006). Transcrystalline melt migration and Earth’s mantle. Science 314, 970–974. doi:10.1126/science.1132485
Schmickler B, Jacob DE, Foley SF (2004). Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:173-207. doi:10.1016/j.lithos.2003.12.012
Schubert G, Turcotte DL, Olson P (2001) Mantle Convection in the Earth and Planets. Cambridge University Press. isbn:9780521798365
Schulze DJ (1989). Constraints on the abundance of eclogite in the upper mantle. Journal of Geophysical Research 94(B4):4205-4212. doi:10.1029/jb094ib04p04205
Scordari F, Dyar MD, Schingaro E, Lacalamita M, Ottolini L (2010). XRD, microXANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt, Vulture (Italy). American Mineralogist 95, 1657–1670. doi:10.2138/am.2010.3442
Seifert R, Malfait WJ, Petitgirard S, Sanchez-Valle C (2013). Density of phonolitic magmas and time scales of crystal fractionation in magma chambers. Earth and Planetary Science Letters 381, 12–20. doi:10.1016/j.epsl.2013.08.039
Seitz HM, Altherr R, Ludwig T (1999). Partitioning of transition elements between orthopyroxene and clinopyroxene in peridotitic and websteritic xenoliths: New empirical geothermometers. Geochimica et Cosmochimica Acta 63, 3967–3982. doi:10.1016/S0016-7037(99)00163-5
Sen IS, Bizimis M, Sen G, Huang S (2011). A radiogenic Os component in the oceanic lithosphere? Constraints from Hawaiian pyroxenite xenoliths. Geochimica et Cosmochimica Acta 75 (17), 4899–4916. doi:10.1016/j.gca.2011.06.008
Seyler M, Cannat M, Mével C (2003). Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68° E). Geochemistry, Geophysics, Geosystems 4 (2). doi:10.1029/2002GC000305.
Seyler M, Lorand J-P, Toplis MJ, Godard G (2004). Asthenospheric metasomatism beneath the mid-ocean ridge: evidence from depleted abyssal peridotites. Geology 32 (2), 301–304. doi:10.1130/G20191.1
Shaw CSJ, Heidelbach F, Dingwell DB (2006). The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contributions to Mineralogy and Petrology 151, 681–697. doi:10.1007/s00410-006-0087-2
Shen Y, Forsyth DW (1995). Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges. Journal of Geophysical Research 100(B2):2211-2237. doi:10.1029/94jb02768
Shervais JW,Wilshire HG, Schwarzman EC (1973). Garnet clinopyroxenite xenolith from Dish Hill, California. Earth and Planetary Science Letters 19, 120-130. doi:10.1016/0012-821x(73)90106-4
Shimizu N (1998). The geochemistry of olivine-hosted melt inclusions in a Famous basalt ALV519-4-1. Physics of the Earth and Planetary Interiors 107:183-201. doi:10.1016/S0031-9201(97)00133-7
Shorttle O, Maclennan J (2011). Compositional trends of Icelandic basalts: implications for short-length scale lithological heterogeneity in mantle plumes. Geochemistry, Geophysics, Geosystems 12 (Q11008). doi:10.1029/2011GC003748.
Shorttle O, Maclennan J, Lambart S (2014). Quantifying lithological variability in the mantle. Earth and Planetary Science Letters 395, 24–40. doi:10.1016/j.epsl.2014.03.040
Shorttle O, Maclennan J, Piotrowski AM (2013). Geochemical provincialism in the Iceland plume. Geochimica et Cosmochimica Acta 122, 363–397. doi:10.1016/j.gca.2013.08.032
Sigmarsson O, Carn S, Carracedo JC (1998). Systematics of U-series nuclides in primitive lavas from the 1730–36 eruption on Lanzarote, Canary Islands, and implications for the role of garnet pyroxenites during oceanic basalt formations. Earth and Planetary Science Letters, 162(1–4), 137–151. doi:10.1016/S0012-821X(98)00162-9
Sims KWW, Maclennan J, Blichert-Toft J, Mervine EM, Blusztajn J, Grönvold K (2013). Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting. Earth and Planetary Science Letters 379, 146–157. doi:10.1016/j.epsl.2013.07.027
Sinton J, Grönvold K, Sæmundsson K (2005). Postglacial eruptive history of the Western Volcanic Zone, Iceland. Geochemistry Geophysics Geosystems 6. doi:10.1029/2005GC001021
Skovgaard AC, Storey M, Baker J, Blusztajn J, Hart SR (2001). Osmium–oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth and Planetary Science Letters 194, 259–275. doi:10.1016/S0012-821X(01)00549-0
Slater L, McKenzie D, Gronvöld K, Shimizu N (2001). Melt generation and movement beneath Theistareykir, NE Iceland. Journal of Petrology 42, 321–354. doi:10.1093/petrology/42.2.321
Sleep NH (1984). Tapping of magmas from ubiquitous mantle heterogeneities: an alternative to mantle plumes. Journal of Geophysical Research 89:10029-10041. doi:10.1029/jb089ib12p10029
Sleep NH (1988). Tapping of melts by veins and dykes. Journal of Geophysical Research 93, 10255-10272. doi:10.1029/jb093ib09p10255
Sleep NH (1990). Hotspots and mantle plumes: some phenomenology. Journal of Geophysical Research 95 (B5), 6715–6736. doi:10.1029/JB095iB05p06715
Smith CS (1964). Some elementary principles of polycrystalline microstructure. Metallurgical Reviews 9, 1-48. doi:10.1179/mtlr.1964.9.1.1
Smith PM, Asimow PD (2005). Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochemistry, Geophysics, Geosystems 6(1). doi:10.1029/2004GC000816
Smyth JR (1980). Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacities. American Mineralogist, 65, 1185–1191. link
Snedecor GW, Cochran WG (1989) Statistical Methods, 8th Edition Iowa state University Press isbn:9780813815619
Sobolev AV, Hofmann AW, Brügmann G, Batanova VG, Kuzmin DV (2008). A quantitative link between recycling and osmium isotopes. Science 321, 321. doi:10.1126/science.1158452
Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley G, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007). The amount of recycled crust in sources of mantle derived melts. Science 316, 590–597. doi:10.1126/science. 1138113
Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung, SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007). The amount of recycled crust in sources of mantle-derived melts. Science 316:412-417. doi:10.5800/gt-2012-3-1-0059
Sobolev AV, Hofmann AW, Nikogosian IK (2000). Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404, 986–989. doi:10.1038/35010098
Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005). An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597. doi:10.1038/nature03411
Sobolev AV, Shimizu N (1993). Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363:151-154. doi:10.1038/363151a0
Spandler C, Yaxley G, Green DH, Rosenthal A (2008). Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa. Journal of Petrology 49 (4), 771–795. doi:10.1093/petrology/egm039
Sparks DW, Parmentier EM (1991). Melt extraction from the mantle beneath spreading centers. Earth and Planetary Science Letters 105(4), 368-377. doi:10.1016/0012-821x(91)90178-k
Spiegelman M, Kelemen PB, Aharonov E (2001). Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media. Journal of Geophysical Research 106(B2):2061-2077. doi:10.1029/2000JB900240
Spray JG (1989). Upper mantle segregation processes: evidence from alpine-type peridotite. In: Saunders AD, Norry MJ (Eds.), Magmatism in the ocean basins: Geological Society, London, Special Publications 42:29-40. doi:10.1144/gsl.sp.1989.042.01.04
Stähle V, Frenzel G, Kober B, Michard A, Puchelt H, Schneider W (1990). Zircon syenite pegmatites in the Finero peridotite (Ivrea zone): evidence for a syenite from a mantle source. Earth and Planetary Science Letters 101, 196–205. doi:10.1016/0012-821X(90)90153-O
Staples RK, White RS, Brandsdóttir B, Menke W, Maguire PKH, McBride JH (1997). Färoe–Iceland Ridge experiment 1. Crustal structure of northeastern Iceland. Journal of Geophysical Research 102, 7849–7866. doi:10.1029/96JB03911
Steebins JF, Carmichael ISE, Moret LK (1984). Heath capacities and entropies of silicate liquids and glasses. Contributions to Mineralogy and Petrology, 86, 131-148. doi:10.1007/BF00381840
Stolper E (1980). A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contributions to Mineralogy and Petrology 74(1):13-27. doi:10.1007/BF00375485
Stolper EM, Asimow PD (2007). Insights into mantle melting from graphical analysis of one-component systems. American Journal of Science 307, 1051–1139. doi:10.2475/08.2007.01
Stolper EM, Sherman S, Garcia M, Baker MB, Seaman C (2004). Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochemistry, Geophysics, Geosystems 5 (7), Q07G15. doi:10.1029/2003GC000553.
Stracke A, Bizimis M, Salters VJM (2003). Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems 4, 8003. doi:10.1029/2001GC000223.
Stracke A, Bourdon B (2009). The importance of melt extraction for tracing mantle heterogeneity. Geochimica et Cosmochimica Acta 73, 218–238. doi:10.1016/j.gca.2008.10.015
Stracke A, Salters VJM, Sims KWW (1999). Assessing the presence of garnet–pyroxenite in the mantle sources of basalts through combined hafnium–neodymium–thorium isotope systematics. Geochemistry, Geophysics, Geosystems 1 (12), 1–13. doi:10.1029/1999GC000013
Stracke A, Snow JE, Hellebrand E, von der Handt A, Bourdon B, Birbaum K, Gunther D (2011). Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth and Planetary Science Letters 208, 359–368. doi:10.1016/j.epsl.2011.06.012
Stracke A, Zindler A, Salters VJM, McKenzie D, Blichert-Toft J, Albarède F, Grönvold K (2003). Theistareykir revisited. Geochemistry Geophysics Geosystems 4. doi:10.1029/2001GC000201
Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008). Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems, 9(3), Q03007. doi:10.1029/2007GC001583
Suhr G (1999). Melt migration under oceanic ridges: inferences from reactive modelling of upper mantle hosted dunites. Journal of Petrology 40:575-599. doi:10.1093/petrology/40.4.575
Suhr G, Hellebrand E, Snow JE, Seck HA, Hofmann AW (2003). Significance of large, refractory dunite bodies in the upper mantle of the Bay of Islands Ophiolite. Geochemistry Geophysics Geosystems 4(3) doi:10.1029/2001GC000277
Suhr G, Kelemen P, Paulick H (2008). Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: tracking the fate of melts percolating in peridotite as the lithosphere is intercepted. Geochemistry, Geophysics, Geosystems 9 (3), Q03012. doi:10.1029/2007GC001726.
Sun SS, McDonough WF (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345. doi:10.1144/GSL.SP.1989.042.01.19
Sun W, Ding X, Hu Y, Zartman RE, Arculus R, Kamenetsky MB, Chen M (2011). The fate of subducted oceanic crust: a mineral segregation model International Geology Review, 53(8), 879–893. doi:10.1080/00206810903211930
Sun W, Hu,Y., Kamenetsky VS, Eggins SM, Chen M, Arculus RJ (2008). Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta 72, 3542–3549. doi:10.1016/j.gca.2008.04.029
Takahashi E (1986). Melting of a dry peridotite KBL-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research 91 (B9), 9367–9382. doi:10.1029/JB091iB09p09367
Takahashi E, Kushiro I (1983). Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist 68:859-879. link
Takahashi E, Nakajima K, Wright TL (1998). Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth and Planetary Science Letters 162, 63–80. doi:10.1016/S0012-821X(98)00157-5
Takahashi E, Shimazaki T, Tsuzaki Y, Yoshida H (1993). Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. Philosophical Transactions of the Royal Society of London, 342, 105–120. doi:10.1098/rsta.1993.0008
Takahashi N (1992). Evidence for melt segregation towards fractures in Horoman mantle peridotite complex. Nature 359:52-58. doi:10.1038/359052a0
Tang HF, Liu CQ, Nakai S, Orihashi Y (2007). Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China: new insights into protoliths and trace element behaviour during UHP metamorphism. Lithos 95:441-457. doi:10.1016/j.lithos.2006.09.007
Tatsumoto M (1966). Genetic relations of oceanic basalts as indicated by lead isotopes. Science 153, 1094–1101. doi:10.1126/science.153.3740.1094
Taura H, Yurimoto H, Kurita K, Sueno S (1998). Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Physics and Chemistry of Minerals 25, 469–484. doi:10.1007/s002690050138
Taylor SR, McLennan, SM (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications. 312 pp. isbn:9780632011483
Thirlwall MF (1995). Generation of Pb isotopic characteristics of the Iceland plume. J. Geol. Soc. 152, 991–996. doi:10.1144/GSL.JGS.1995.152.01.19
Thirlwall MF, Gee MAM, Lowry D, Mattey DP, Murton BJ, Taylor RN (2006). Low δ18O in the Icelandic mantle and its origins: evidence from Reykjanes ridge and Icelandic lavas. Geochimica et Cosmochimica Acta 70, 993–1019. doi:10.1016/j.gca.2005.09.008
Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004). Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochimica et Cosmochimica Acta 68, 361–386. doi:10.1016/S0016-7037(03)00424-1
Thompson GM, Smith IEM, Malpas JG (2001). Origin of oceanic phonolites by crystal fractionation and the problem of the Daly gap: an example from Rarotonga. Contributions to Mineralogy and Petrology 142, 336–346. doi:10.1007/s004100100294
Till CB, Grove TL, Krawczynski MJ (2012). A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields. Journal of Geophysical Research, 117(B6), B06206. doi:10.1029/2011JB009044
Tommasi A, Godard M, Coromina G, Dautria JM, Barsczus H (2004). Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia. Earth and Planetary Science Letters 227:539-556. doi:10.1016/j.epsl.2004.09.019
Toplis MJ (2005). The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology 149:22-39. doi:10.1007/s00410-004-0629-4
Tsuruta K, Takahashi E (1998). Melting study of an alkali basalt JB-1 up to 12.5 GPa: behavior of potassium in the deep mantle. Physics of the Earth and Planetary Interiors, 107(1–3), 119-130. doi:10.1016/S0031-9201(97)00130-1
Tuff J, Takahashi E, Gibson SA (2005). Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of Petrology, 46(10), 2023-2058. doi:10.1093/petrology/egi046
Turcotte DL, Schubert G (2002) Geodynamics, second edition. Cambridge University Press. isbn:9780521186230
Ulmer P (1989). The dependence of the Fe2+-Mg cation partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contributions to Mineralogy and Petrology 101:261-273. doi:10.1007/bf00375311
Upton BGJ, Hinton RW, Aspen P, Finch A, Valley JW (1999). Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. Journal of Petrology 40, 935–956. link
Van derWal D, Bodinier JL (1996). Origin of the recrystallization front in the Ronda peridotite by km-scale pervasive porous melt flow. Contributions to Mineralogy and Petrology 122, 387-405. doi:10.1007/s004100050135
Volkova NI, Frenkel AE, Budanov VI, Lepezin GG (2004). Geochemical signatures for eclogite protolith from the Maksyutov Complex, South Urals. J. Asian Earth Sci. 23:745-749. doi:10.1016/s1367-9120(03)00128-7
von Bargen N, Waff HS (1986). Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. Journal of Geophysical Research 91, 9261–9276. link
Walker D, Shibata T, DeLong S (1979). Abyssal tholeiites from the Oceanographer Fracture Zone. Contributions to Mineralogy and Petrology 70 (2), 111–125. doi:10.1007/BF00374440
Walter MJ (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39 (1), 29–60. doi:10.1093/petroj/39.1.29
Walter MJ, Presnall DC (1994). Melting behaviour of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–Na2O from 7 to 35 kbar. Journal of Petrology 35, 329–359. doi:10.1093/petrology/35.2.329
Walter MJ, Sisson TW, Presnall DC (1995). A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite. Earth and Planetary Science Letters 135, 77–90. doi:10.1016/0012-821X(95)00148-6
Wark DA, Williams CA,Watson EB, Price JD (2003). Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. Journal of Geophysical Research 108(B1), 2050. doi:10.1029/2001JB001575
Warren JM, Shimizu N (2010). Cryptic variations in abyssal peridotite compositions: evidence for shallow-level melt infiltration in the oceanic lithosphere. Journal of Petrology 51 (1–2), 395–423. doi:10.1093/petrology/egp096
Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003). Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. Journal of Petrology 44:1163-1191. doi:10.1093/petrology/44.7.1163
Waters CL, Sims KWW, Perfit MR, Blichert-Toft J, Blusztajn J (2011). Perspective on the Genesis of E-MORB from Chemical and Isotopic Heterogeneity at 9-10°N East Pacific Rise. Journal of Petrology 52, 565–602. doi:10.1093/petrology/egq091
Weatherley SM, Katz RF (2016). Melt transport in heterogeneous mantle beneath mid-ocean ridges. Geochemica et Cosmochemica Acta 172, 39–54. doi:10.1016/j.gca.2015.09.029
Wedepohl KH, Gohn E, Hartmann G (1994). Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. Contributions to Mineralogy and Petrology 115, 253–278. doi:10.1007/BF00310766
Whitaker ML, Nekvasil H, Lindsley DH, Difrancesco NJ (2007). The role of pressure in producing compositional diversity in intraplate basaltic magmas. Journal of Petrology, 48(2), 365-393. doi:10.1093/petrology/egl063
White RS, McKenzie D, O’Nions K (1992). Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research 97, 19683–19715. doi:10.1029/92JB01749
White RW, Powell R, Holland TJB, Worley B (2000). The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 18, 497–511. doi:10.1046/j.1525-1314.2000.00269.x
White WM (1985). Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115–118. doi:10.1130/0091-7613(1985)13<115:SOOBRI>2.0.CO;2
Wiens DA, Kelley KA, Plank T (2006). Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry. Earth and Planetary Science Letters 248, 30–42. doi:10.1016/j.epsl.2006.04.011
Wilson JT (1963). Evidence from islands on the spreading of ocean floors. Nature 197, 536–538. doi:10.1038/197536a0
Wood DA (1979). A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology 7, 499–503. doi:10.1130/0091-7613(1979)7<499:AVVSUM>2.0.CO;2
Wood MI, Hess PC (1980). The structural role of Al2O3 and TiO2 in immiscible silicate liquids in the system SiO2–MgO–CaO–FeO–TiO2–Al2O3. Contributions to Mineralogy and Petrology 72, 319–328. doi:10.1007/BF00376151
Workman RK, Hart SR (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 53–72. doi:10.1016/j.epsl.2004.12.005
Wright JB (1969). Olivine nodules and related inclusions in trachyte from the Jos Plateau, Nigeria. Mineralogical Magazine 37, 370–374. link
Wyllie PJ (1978). The effect of H2O and CO2 on planetary mantles. Geophysical Research Letters, 5, 440–442. doi:10.1029/GL005i006p00440
Xu Y (2002). Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China. Chem. Geol. 182:301-322. doi:10.1016/s0009-2541(01)00300-x
Yasuda A, Fujii T, Kurita K (1994). Melting phase relations of an anhydrous Mid-Ocean Ridge Basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. Journal of Geophysical Research 99(B5):9401-9414. doi:10.1029/93jb03205
Yaxley (2000). Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contributions to Mineralogy and Petrology 139:326-338 doi:10.1007/s004100000134
Yaxley G, Green DH (1998). Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen 78(2), 243-255. link
Yaxley GM (2000). Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contributions to Mineralogy and Petrology, 139(3), 326–338. doi:10.1007/s004100000134
Yaxley GM, Brey GP (2004). Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology 146, 606–619. doi:10.1007/s00410-003-0517-3
Yaxley GM, Sobolev AV (2007). High-pressure partial melting of gabbro and its role in the Hawaiian magma source. Contributions to Mineralogy and Petrology 154, 371–383. doi:10.1007/s00410-007-0198-4
Yoder HS (1976) Generation of basaltic magma. National Academy of Sciences, Washington DC, pp 143-144 isbn:9780309025041
Yoder HS, Tilley CE (1962). Origin of basalt magmas: an experimental study of natural and synthetic rock systems. Journal of Petrology 3 (3), 342–532. doi:10.1093/petrology/3.3.342
Zhang G (2011). Comparative study of magmatism in East Pacific Rise versus nearby seamounts: constraints on magma supply and thermal structure beneath midocean ridge. Acta Geologica Sinica 85 (6), 1286–1298. doi:10.1111/j.1755-6724.2011.00588.x
Zindler A, Hart SR (1986). Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493–571. doi:10.1146/annurev.ea.14.050186.002425
Zindler A, Hart SR, Frey FA, Jakobsson SP (1979). Nd and Sr isotope ratios and rare earth element abundances in Reykjanes Peninsula basalts evidence for mantle heterogeneity beneath Iceland. Earth and Planetary Science Letters, 45(2), 249–262. doi:10.1016/0012-821X(79)90127-4
Zindler A, Staudigel H, Batiza R (1984). Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth and Planetary Science Letters 70, 175–195. doi:10.1016/0012-821X(84)90004-9
Dr Sarah Lambart
Geology and Geophysics, Frederick Albert Sutton Building
115 S 1460 E, Room 409
Salt Lake City, UT 84112-0102